精英家教网 > 高中数学 > 题目详情
设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程.
分析:(1)把已知点的坐标代入椭圆方程,再由椭圆的定义知2a=4,从而求出椭圆的方程,由椭圆的方程求出焦点坐标.
(2)设F1K的中点Q(x,y),则由中点坐标公式得点K(2x+1,2y),把K的坐标代入椭圆方程,化简即得线段KF1的中点Q的轨迹方程.
解答:解:(1)椭圆C的焦点在x轴上,由椭圆上的点A到F1、F2两点的距离之和是4,得2a=4,即a=2.…(2分)
又点A(1,
3
2
)在椭圆上,因此
1
22
+
(
3
2
)
2
b2
=1得b2=3,于是c2=1.…(4分)
所以椭圆C的方程为
x2
4
+
y2
3
=1,…(5分)
焦点F1(-1,0),F2(1,0).…(7分)
(2)设椭圆C上的动点为K(x1,y1),线段F1K的中点Q(x,y)满足:x=
-1+x1
2
,y=
y1
2
,即x1=2x+1,y1=2y.…(11分)
因此
(2x+1)2
4
+
(2y)2
3
=1.即(x+
1
2
)2+
4y2
3
=1
为所求的轨迹方程.…(15分)
点评:本题考查椭圆的简单性质、线段的中点公式,以及用代入法求轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2分别为椭C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右两个焦点,椭圆C上的点A(1,
3
2
)
到两点的距离之和等于4.
(Ⅰ)求椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点Q(0.
1
2
)
求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设F1,F2分别为椭C:数学公式(a>b>0)的左、右两个焦点,椭圆C上的点数学公式到两点的距离之和等于4.
(Ⅰ)求椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点数学公式求|PQ|的最大值.

查看答案和解析>>

同步练习册答案