【题目】已知抛物线的焦点为,准线与轴交于点,过点的直线交抛物线于,两点,点在第一象限.
若,,求直线的方程;
若,点为准线上任意一点,求证:直线,,的斜率成等差数列.
科目:高中数学 来源: 题型:
【题目】年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示月日至月日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是( )
A.月下旬新增确诊人数呈波动下降趋势
B.随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数
C.月日至月日新增确诊人数波动最大
D.我国新型冠状病毒肺炎累计确诊人数在月日左右达到峰值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过抛物线的焦点,上的点与的两个焦点所构成的三角形的周长为.
(1)求的方程;
(2)若点关于原点的对称点为,过点作直线交于另一点,交轴于点,且∥.判断是否为定值,若是求出该值;若不是请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,P是椭圆的上顶点,过点P作斜率为的直线l交椭圆于另一点A,设点A关于原点的对称点为B
(1)求面积的最大值;
(2)设线段PB的中垂线与y轴交于点N,若点N在椭圆内部,求斜率k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过椭圆的左、右焦点分别作倾斜角为的直线,且之间的距离为1.
(1)求椭圆的标准方程;
(2)若直线与椭圆只有一个公共点,求点到直线的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知函数的图象与y轴交于点,与x轴交于A,B两点,其中,.
(1)求函数的解析式;
(2)将函数图象上所有点的横坐标缩短为原来的(纵坐标不变),得到函数的图象,求函数的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把一块边长为的正六边形铁皮,沿图中的虚线(虛线与正六边形的对应边垂直)剪去六个全等的四边形(阴影部分),折起六个矩形焊接制成一个正六棱柱形的无盖容器(焊接损耗忽略),设容器的底面边长为.
(1)若,且该容器的表面积为时,在该容器内注入水,水深为,若将一根长度为的玻璃棒(粗细忽略)放入容器内,一端置于处,另一端置于侧棱上,忽略铁皮厚度,求玻璃棒浸人水中部分的长度;
(2)求该容器的底面边长的范围,使得该容器的体积始终不大于.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设双曲线的左、右焦点分别为F1,F2,过点F2的直线分别交双曲线左、右两支于点P,Q,点M为线段PQ的中点,若P,Q,F1都在以M为圆心的圆上,且,则双曲线C的离心率为( )
A.B.2C.D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com