精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面,四边形为菱形,EF分别为的中点.

1)求证:平面

2)点G是线段上一动点,若与平面所成最大角的正切值为,求二面角的余弦值.

【答案】(1)证明见解析(2)

【解析】

1)取的中点H,连结,证明四边形为平行四边形得到证明.

2)连结,证明与平面所成角的平面角得到,以A为原点,如图建立空间直角坐标系,平面的一个法向量为,平面的法向量,计算夹角得到答案.

1)取的中点H,连结

EF分别为的中点,∴

由题知,∴

∴四边形为平行四边形,∴

平面,且平面,∴平面.

2)连结,∵四边形为菱形,

是等边三角形,E中点,

,且

平面平面,∴

平面

平面,∴

与平面所成角的平面角,

中,∵

∴当最短时,最大,

,∴

中,,∴

A为原点,如图建立空间直角坐标系,

,∴平面

∴平面的一个法向量为

平面的法向量

,∴,取,得

设二面角的平面角为

∴二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,相邻两项anan+1是关于x的方程:x2+3nx+bn0nN*)的两实根,且a11

1)若Sn为数列{an}的前n项和,求S100

2)求数列{an}{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴为,且过点

1)求椭圆的方程;

2)设点为原点,若点在曲线上,点在直线上,且,试判断直线与圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;

(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;

(3)若为定义域上的“局部奇函数”,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税法》规定,公民月收入总额(工资、薪金等)不超过免征额的部分不必纳税,超过免征额的部分为全月应纳税所得额,个人所得税税款按税率表分段累计计算.为了给公民合理减负,稳步提升公民的收入水平,自2018101日起,个人所得税免征额和税率进行了调整,调整前后的个人所得税税率表如下:

1)已知小李20189月份上交的税费是295元,10月份月工资、薪金等税前收入与9月份相同,请帮小李计算一下税率调整后小李10月份的税后实际收入是多少?

2)某税务部门在小李所在公司利用分层抽样方法抽取某月100位不同层次员工的税前收入,并制成下面的频率分布直方图.

(ⅰ)请根据频率分布直方图估计该公司员工税前收入的中位数;

(ⅱ)同一组中的数据以这组数据所在区间中点的值作代表,按调整后税率表,试估计小李所在的公司员工该月平均纳税多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于x的方程有四个不等实根,且恒成立,则实数的最小值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,离心率为,点在椭圆上,且的周长为

1)求椭圆的方程;

2)已知过点的直线与椭圆交于两点,点在直线上,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为升;

(1)将表示为的函数;

(2)若,求总用氧量的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,,四边形ACEF为正方形,且平面平面ACEF.

(1)证明:;

(2)求平面BEF与平面BCF所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案