精英家教网 > 高中数学 > 题目详情
11、已知P(3,0)是圆x2+y2-8x-2y+12=0内一点,则过P点的最短弦所在直线的方程是
x+y-3=0
分析:由已知中P(3,0)是圆x2+y2-8x-2y+12=0内一点,由垂径定理可得,过P点的最短弦所在直线与过P点的直径垂直,由圆的方程求出圆心坐标后,可以求出过P点的直径的斜率,进而求出过P点的最短弦所在直线的斜率,利用点斜式,可以得到过P点的最短弦所在直线的方程,但结果要化为一般式的形式.
解答:解:由圆的一般方程x2+y2-8x-2y+12=0可得
圆的标准方程为:(x-4)2+(y-1)2=5
即圆的圆心坐标为(4,1),
则过P点的直径所在直线的斜率为1,
由于过P点的最短弦所在直线与过P点的直径垂直
∴过P点的最短弦所在直线的斜率为-1,
∴过P点的最短弦所在直线的方程y=-1(x-3)
即x+y-3=0
故答案为:x+y-3=0.
点评:本题考查的知识点是直线与圆相交的性质,其中由垂径定理,判断出过P点的最短弦所在直线与过P点的直径垂直是解答本题的关键,另外求直线方程最后要将结果化为一般式的形式,这是本题中易忽略的地方.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C1:x2+y2+D1x+8y-8=0,圆C2:x2+y2+D2x-4y-2=0.
(1)若D1=2,D2=-4,求圆C1与圆C2的公共弦所在的直线l1的方程;
(2)在(1)的条件下,已知P(-3,m)是直线l1上一点,过点P分别作直线与圆C1、圆C2相切,切点为A、B,求证:|PA|=|PB|;
(3)将圆C1、圆C2的方程相减得一直线l2:(D1-D2)x+12y-6=0.Q是直线l2上,且在圆C1、圆C2外部的任意一点.过点Q分别作直线QM、QN与圆C1、圆C2相切,切点为M、N,试探究|QM|与|QN|的关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(x0,y0)是圆C:x2+(y-4)2=1外一点,过P作圆C的切线,切点为A、B,记:四边形PACB的面积为f(P)
(1)当P点坐标为(1,1)时,求f(P)的值;
(2)当P(x0,y0)在直线3x+4y-6=0上运动时,求f(P)最小值;
(3)当P(x0,y0)在圆(x+4)2+(y-1)2=4上运动时,指出f(P)的取值范围(可以直接写出你的结果,不必详细说理);
(4)当P(x0,y0)在椭圆
x24
+y2=1上运动时f(P)=5是否能成立?若能求出P点坐标,若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•蓟县一模)已知P(x,y)是圆x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0),则
PA
PB
的最大值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知P(3,0)是圆x2+y2-8x-2y+12=0内一点,则过P点的最短弦所在直线的方程是________.

查看答案和解析>>

同步练习册答案