精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,在直三棱柱中,分 别是棱上的点(点 不同于点),且的中点.

求证:(1)平面平面(2)直线平面
(1)根据是直三棱柱,则根据其性质可知,平面,然后结合结合面面垂直的判定定理来得到
(2)因为平面,那么可知,再结合其性质,平面。由(1)知,平面,可知结论。

试题分析:证明:(1)∵是直三棱柱,∴平面
又∵平面,∴
又∵平面,∴平面
又∵平面,∴平面平面
(2)∵的中点,∴
又∵平面,且平面,∴
又∵平面,∴平面
由(1)知,平面,∴
点评:解决该试题的关键是利用面面垂直和线面垂直的判定定理来加以证明,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是矩形,⊥平面.

(1)求证:⊥平面
(2)求二面角余弦值的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四边形ABCD是矩形,,F为CE上的点,且BF平面ACE,AC与BD交于点G

(1)求证:AE平面BCE
(2)求证:AE//平面BFD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平面,为等边三角形.

(1)若,求证:平面平面
(2)若多面体的体积为,求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中正确的是
A.棱柱的侧面可以是三角形
B.正方体和长方体都是特殊的四棱柱
C.所有的几何体的表面都能展成平面图形
D.棱柱的各条棱都相等

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形中,为正三角形,交于点.将沿边折起,使点至点,已知与平面所成的角为,且点在平面内的射影落在内.

(Ⅰ)求证:平面
(Ⅱ)若已知二面角的余弦值为,求的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体中,点在线段上移动,则异面直线所成的角的取值范围(      )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一空间几何体的三视图如图,则该几何体的体积为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设四棱锥P-ABCD的底面不是平行四边形, 用平面α去截此四棱锥(如右图), 使得截面四边形是平行四边形, 则这样的平面α 有(     )
A.不存在     B.只有1个
C.恰有4个    D.有无数多个

查看答案和解析>>

同步练习册答案