精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx.
(1)若函数y=f(x)在x=2处有极值-6,求y=f(x)的单调递减区间;
(2)若y=f(x)的导数f′(x)对x∈[-1,1]都有f′(x)≤2,求的取值范围.
(1)   (2)(-∞,-2)∪[1,+∞)
(1)f′(x)=3x2+2ax+b,
依题意有,即
解得,∴f′(x)=3x2-5x-2.
由f′(x)<0,得-<x<2.
∴y=f(x)的单调递减区间是
(2)由,得
不等式组确定的平面区域如图阴影部分所示:

,得
∴Q点的坐标为(0,-1).
设z=,则z表示平面区域内的点(a,b)与点
P(1,0)连线的斜率.
∵kPQ=1,由图可知z≥1或z<-2,
∈(-∞,-2)∪[1,+∞).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若处的切线与直线垂直,求的单调区间;
(2)求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数的定义域是,其中常数.
(1)若,求的过原点的切线方程.
(2)当时,求最大实数,使不等式恒成立.
(3)证明当时,对任何,有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为常数).
(1)函数的图象在点处的切线与函数的图象相切,求实数的值;
(2)若使得成立,求满足上述条件的最大整数
(3)当时,若对于区间内的任意两个不相等的实数,都有
成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的图像在点处的切线方程是,则_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 
(1)当在点处的切线方程是y=x+ln2时,求a的值.
(2)当的单调递增区间是(1,5)时,求a的取值集合.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是(  )
A.?x0∈R,f(x0)=0
B.函数y=f(x)的图象是中心对称图形
C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)上单调递减
D.若x0是f(x)的极值点,则f′(x0)=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则处的导数 (  )
A.B.C.0D.

查看答案和解析>>

同步练习册答案