精英家教网 > 高中数学 > 题目详情
15.直线(m+2)x+my+1=0与直线(m-1)x+(m-4)y+2=0互相垂直,则m 的值为(  )
A.$\frac{1}{2}$B.-2C.-$\frac{1}{2}$或2D.-2或$\frac{1}{2}$

分析 由直线垂直可得(m+2)(m-1)+m(m-4)=0,解方程可得m值.

解答 解:∵直线(m+2)x+my+1=0与直线(m-1)x+(m-4)y+2=0互相垂直,
∴(m+2)(m-1)+m(m-4)=0,解得m=2或m=-$\frac{1}{2}$,
故选C.

点评 本题考查直线的一般式方程和垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,概括出第n个式子为1-4+9-16+…+(-1)n+1•n2=(-1)n+1•(1+2+3+…+n).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知m,n∈R,则“mn<0”是“方程$\frac{x^2}{m}-\frac{y^2}{n}=1$为双曲线方程”的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=log2(ax2+4x+5).
(1)若f(1)<3,求a的取值范围;
(2)若a=1,求函数f(x)的值域.
(3)若f(x)的值域为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=e|x-a|(a∈R)满足f(1+x)=f(-x),且f(x)在区间[m,m+1]上是单调函数,则实数m的取值范围是(-∞,-$\frac{1}{2}$]∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=$\sqrt{3}$,B是A,C的等差中项,则角C=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数y=x2+2在点(1,3)处的切线斜率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知两条直线y=ax-2和y=2x+1互相垂直,则a=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知曲线y=$\frac{{x}^{2}}{4}$-lnx的一条切线的斜率为-$\frac{1}{2}$,则切点的坐标为$({1,\frac{1}{4}})$.

查看答案和解析>>

同步练习册答案