精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}满足a2=0,a6+a8=﹣10.
(1)求数列{an}的通项公式;
(2)求数列{ }的前n项和Sn

【答案】
(1)解:设等差数列{an}的公差为d,由已知条件可得

解得:

故数列{an}的通项公式为an=2﹣n;


(2)解:设数列{ }的前n项和为Sn,即Sn=a1+ +…+ ①,故S1=1,

= + +…+ ②,

当n>1时,①﹣②得:

=a1+ +…+

=1﹣( + +…+ )﹣

=1﹣(1﹣ )﹣ =

所以Sn=

综上,数列{ }的前n项和Sn=


【解析】(1)根据等差数列的通项公式化简a2=0和a6+a8=﹣10,得到关于首项和公差的方程组,求出方程组的解即可得到数列的首项和公差,根据首项和公差写出数列的通项公式即可;(2)把(1)求出通项公式代入已知数列,列举出各项记作①,然后给两边都除以2得另一个关系式记作②,①﹣②后,利用an的通项公式及等比数列的前n项和的公式化简后,即可得到数列{ }的前n项和的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率.

(1)求a的值并估计在一个月(按30天算)内日销售量不低于105个的天数;
(2)利用频率分布直方图估计每天销售量的平均值及方差(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与上、下顶点构成直角三角形,以椭圆的长轴长为直径的圆与直线相切.

(1)求椭圆的标准方程;

(2)设过椭圆右焦点且不平行于轴的动直线与椭圆相交于两点,探究在轴上是否存在定点,使得为定值?若存在,试求出定值和点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教师调查了名高三学生购买的数学课外辅导书的数量,将统计数据制成如下表格:

男生

女生

总计

购买数学课外辅导书超过

购买数学课外辅导书不超过

总计

(Ⅰ)根据表格中的数据,是否有的把握认为购买数学课外辅导书的数量与性别相关;

(Ⅱ)从购买数学课外辅导书不超过本的学生中,按照性别分层抽样抽取人,再从这人中随机抽取人询问购买原因,求恰有名男生被抽到的概率.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数有三个不同的零点,则实数的取值范围是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且SABC= ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为数列{an}的前n项和,Sn=2n2﹣30n.
(1)求a1及an
(2)判断这个数列是否是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数 的导函数 的图象,对此图象,有如下结论:

①在区间(-2,1)内 是增函数;
②在区间(1,3)内 是减函数;
③在 时, 取得极大值;
④在 时, 取得极小值。
其中正确的是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,函数y=2sin(πx+φ),x∈R(其中0≤φ≤ )的图象与y轴交于点(0,1).

(1)求φ的值.
(2)设P是图象上的最高点,M、N是图象与x轴的交点,求tan∠MPN的值.

查看答案和解析>>

同步练习册答案