精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,侧棱底面分别为棱的中点.

1)求证:

2)若,求三棱锥的体积;

3)判断直线与平面的位置关系,并说明理由.

【答案】1)证明见解析 2 3平面AEF,理由见解析

【解析】

1)首先证出,根据线面垂直的判定定理证出平面,再由线面垂直的定义即证.

2)证出为三棱锥的高,利用三棱锥的体积公式以及等体法即可求解.

3)利用线面平行的判定定理即可证出直线与平面的位置关系.

证明:(1

平面平面

点为的中点,

平面

平面

,即

2,故

三棱柱中,侧棱底面

平面

平面,

平面

为三棱锥的高

3平面,证明如下:

连接,记相交于点 ,连接

分别为的中点,

四边形为平行四边形

中点,

中点,

平面平面

平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD中,AB=10BC=6,将矩形沿对角线BD△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC

)求证:BC⊥A1D

)求证:平面A1BC⊥平面A1BD

)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥中,,点上,且.

1)证明:平面

2)求以为棱,为面的二面角的大小

3)在棱上是否存在一点,使平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形.点是棱的中点,平面与棱交于点

1)求证:

2)若,且平面平面,试证明平面

3)在(2)的条件下,线段上是否存在点,使得平面?(直接给出结论,不需要说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中

附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:

1)根据散点图判断,,哪一个适宜作为年销售量关于年宣传费的回归方程类型(给出判断即可,不必说明理由);

2)根据(1)的判断结果及表中数据,建立关于的回归方程;

3)已知这种产品的年利润的关系为,根据(2)的结果回答:当年宣传费时,年销售量及年利润的预报值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)设,求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高中生在被问及家,朋友聚集的地方,个人空间三个场所中感到最幸福的场所在哪里?这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占朋友聚集的地方占个人空间占.美国高中生答题情况是朋友聚集的地方占家占个人空间占.如下表

在家里最幸福

在其它场所幸福

合计

中国高中生

美国高中生

合计

(Ⅰ)请将列联表补充完整;试判断能否有的把握认为恋家与否与国别有关;

(Ⅱ)从被调查的不恋家的美国学生中,用分层抽样的方法选出4人接受进一步调查,再从4人中随机抽取2人到中国交流学习,求2人中含有在个人空间感到幸福的学生的概率.

其中.

0.050

0.025

0.010

0.001

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的零点;

2)若关于的方程()恰有个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:

1

2

3

4

5

被感染的计算机数量(台)

10

20

39

81

160

则下列函数模型中,能较好地反映计算机在第天被感染的数量之间的关系的是

A. B.

C. D.

查看答案和解析>>

同步练习册答案