精英家教网 > 高中数学 > 题目详情

【题目】设椭圆C: + =1(a>b>0)的左、右焦点分别为F1 , F2 , 点A({2, )在椭圆上,且满足 =0. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)动直线l:y=kx+m与椭圆C交于P,Q两点,且OP⊥OQ,是否存在圆x2+y2=r2使得l恰好是该圆的切线,若存在,求出r;若不存在,说明理由.

【答案】解:(Ⅰ)∵ , ∴AF2⊥F1F2
∵A在椭圆上,
,解得
,解得a2=8,b2=4,.
∴椭圆
(Ⅱ)设P(x1 , y1),Q(x2 , y2),
将l:y=kx+m代入 ,整理得:(1+2k2)x2+4kmx+2m2﹣8=0,
∵△>0,
∴8k2﹣m2+4>0,


∵OP⊥OQ,
∴x1x2+y1y2=0,即

和8k2﹣m+4>0,得 即可.
∵l与圆x2+y2=r2相切,

存在圆 符合题意.
【解析】(1)由题意可知c=2,将A代入椭圆,列方程组,即可求得a和b的值,求得椭圆方程;(2)将直线l的方程代入椭圆方程,△>0,根据韦达定理定理求得x1+x2及x1x2 , 代入直线l方程求得y1y2 , 由OP⊥OQ,根据向量数量积的坐标表示求得x1x2+y1y2=0,求得m的取值范围,l与圆x2+y2=r2相切,代入即可求得r的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 是非零不共线的向量,设 = + ,定义点集M={K| = },当K1 , K2∈M时,若对于任意的r≥2,不等式| |≤c| |恒成立,则实数c的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】去年“十一”期间,昆曲高速公路车辆较多.某调查公司在曲靖收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速()分成六段:后,得到如图的频率分布直方图.

(I)调查公司在抽样时用到的是哪种抽样方法?

(II)求这40辆小型汽车车速的众数和中位数的估计值;

(III)若从这40辆车速在的小型汽车中任意抽取2辆,求抽出的2辆车车速都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面的中点.

(1)求证:

(2)求证:

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T,其范围为[0,10],分为五个级别,T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如右图. (Ⅰ)这50个路段为中度拥堵的有多少个?
(Ⅱ)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?
(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|﹣2|x+1|的最大值为k.
(1)求k的值;
(2)若a,b,c∈R, +b2=k,求b(a+c)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究小组欲研究昼夜温差大小与患感冒人数之间的关系,统计得到1至6月份每月9号的昼夜温差与因患感冒而就诊的人数的数据,如下表:

日期

19

2月9

3月9

4月9

59

6月9

10

11

13

12

8

6

22

25

29

26

16

12

该研究小组的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求回归方程,再用之前被选取的2组数据进行检验.

(1)若选取1月和6月的数据作为检验数据,请根据剩下的2至5月的数据,求出关于的线性回归方程;(计算结果保留最简分数)

(2)若用(1)中所求的回归方程作预报,得到的估计数据与所选出的检验数据的误差不超过2人,则认为得到的回归方程是理想的,试问该研究小组所得回归方程是否理想?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为6,离心率为 ,F2为椭圆的右焦点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)点M在圆x2+y2=8上,且M在第一象限,过M作圆x2+y2=8的切线交椭圆于P,Q两点,判断△PF2Q的周长是否为定值并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的省级卫视新闻台融合指数的数据,对名列前20名的省级卫视新闻台的融合指数进行分组统计,结果如表所示.

组号

分组

频数

1


2

2


8

3


7

4


3

)现从融合指数在内的省级卫视新闻台中随机抽取2家进行调研,求至少有1家的融合指数在的概率;

)根据分组统计表求这20省级卫视新闻台的融合指数的平均数.

查看答案和解析>>

同步练习册答案