精英家教网 > 高中数学 > 题目详情

【题目】某景点拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为36米,其中大圆弧所在圆的半径为14米,设小圆弧所在圆的半径为米,圆心角为(弧度).

关于的函数关系式;

已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4/米,弧线部分的装饰费用为16/米,设花坛的面积与装饰总费用之比为,求关于的函数关系式,并求出的最大值.

【答案】 的最大值为

【解析】试题分析:(1)根据扇形的周长公式进行求解即可.
(2)结合花坛的面积公式,结合费用之间的关系进行求解即可.

试题解析:

⑴由题可知

所以.

⑵花坛的面积为

装饰总费用为

所以花坛的面积与装饰总费用之比为

当且仅当取等号,此时

故花坛的面积与装饰总费用之比为

的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为调查高中生选修课的选修倾向与性别关系,随机抽取50名学生,得到如表的数据表:

倾向“平面几何选讲”

倾向“坐标系与参数方程”

倾向“不等式选讲”

合计

男生

16

4

6

26

女生

4

8

12

24

合计

20

12

18

50


(1)根据表中提供的数据,选择可直观判断“选课倾向与性别有关系”的两种,作为选课倾向的变量的取值,并分析哪两种选择倾向与性别有关系的把握大;
附:K2=

P(k2≤k0

0.100

0.050

0.010

0.005

0.001

k0

2.706

3.841

6.635

7.879

10.828


(2)在抽取的50名学生中,按照分层抽样的方法,从倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生中抽取8人进行问卷.若从这8人中任选3人,记倾向“平面几何选讲”的人数减去与倾向“坐标系与参数方程”的人数的差为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为该校学生的每周平均体育运动时间与性别有关.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象,如图所示.

(1)求函数的解析式;

(2)若方程上有两个不同的实根,试求的取值范围;

(3)若,求出函数上的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a0a≠1).

1)判断并证明函数fx)的奇偶性;

2)若ft2t1+ft2)<0,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)的表达式为f(x)= (c≠0),则函数f(x)的图象的对称中心为(﹣ ),现已知函数f(x)= ,数列{an}的通项公式为an=f( )(n∈N),则此数列前2017项的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a,b∈R,且a≠0,e为自然对数的底数).
(1)若曲线f(x)在点(e,f(e))处的切线斜率为0,且f(x)有极小值,求实数a的取值范围.
(2)①当 a=b=l 时,证明:xf(x)+2<0; ②当 a=1,b=﹣1 时,若不等式:xf(x)>e+m(x﹣1)在区间(1,+∞)内恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球

I)试问:一共有多少种不同的结果?请列出所有可能的结果;

)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣2|+|x+1|+2|x+2|.
(Ⅰ)求证:f(x)≥5;
(Ⅱ)若对任意实数x,15﹣2f(x)<a2+ 都成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案