精英家教网 > 高中数学 > 题目详情

【题目】某学校为了解学生对食堂用餐的满意度,从全校在食堂用餐的3000名学生中,随机抽取100名学生对食堂用餐的满意度进行评分.根据学生对食堂用餐满意度的评分,得到如图所示的频率分布直方图,

1)求频率分布直方图中a的值及该样本的中位数

2)规定:学生对食堂用餐满意度的评分不高于80分为不满意,试估计该校在食堂用餐的3000名学生中不满意的人数.

【答案】1;(2.

【解析】

1)根据频率的总和为计算出的值,再根据中位数两边的频率为计算出中位数的值;

2)先根据频率分布直方图计算出“不满意”的频率,然后即可估计出名学生中“不满意”的人数.

1)因为,所以

又因为前组频率之和为

组频率之和为

所以中位数为:

2)由频率分布直方图可知样本中“不满意”的频率为:

所以名学生中“不满意”的人数大约为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高速公路隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成(如图所示).已知隧道总宽度,行车道总宽度,侧墙面高 ,弧顶高

)建立适当的直角坐标系,求圆弧所在的圆的方程.

)为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有.请计算车辆通过隧道的限制高度是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列向量组中,可以把向量=(3,2)表示出来的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司决定每月给推销员确定个具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图.

1)①根据图中数据,求出月销售额在小组内的频率.

②根据直方图估计,月销售目标定为多少万元时,能够使70%的推销员完成任务?并说明理由.

2)该公司决定从月销售额为的两个小组中,选取2位推销员介绍销售经验,求选出的推销员来自同一个小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆ab0)经过点,且离心率为

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知A0b),Ba0),点P是椭圆C上位于第三象限的动点,直线APBP分别将x轴、y轴于点MN,求证:|AN||BM|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在实数满足,且,则称的一个.

(1)证明:函数不存在点;

(2)若函数存在,求的范围;

(3)已知函数,证明:存在正实数,对于区间内任意一个皆是函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.

1)求所取3张卡片上的数字完全相同的概率;

2表示所取3张卡片上的数字的中位数,求的分布列与数学期望.

(注:若三个数满足,则称为这三个数的中位数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为参数),ABC上的动点,且满足O为坐标原点),以原点O为极点,x轴的正半轴为极轴建立坐标系,点D的极坐标为.

1)求椭圆C的极坐标方程和点D的直角坐标;

2)利用椭圆C的极坐标方程证明为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表所示(单位辆),若按A,B,C三类用分层抽样的方法在这个月生产的轿车中抽取50,A类轿车有10


轿车A

轿车B

轿车C

舒适型

100

150

z

标准型

300

450

600

1)求下表中z的值;

2)用随机抽样的方法从B类舒适型轿车中抽取8,经检测它们的得分如下:94,86,92,96,87,93,90,82把这8辆轿车的得分看作一个总体,从中任取一个得分数记这8辆轿车的得分的平均数为,定义事件{,且函数没有零点},求事件发生的概率

查看答案和解析>>

同步练习册答案