精英家教网 > 高中数学 > 题目详情

【题目】如图,已知圆锥的顶点为P,母线长为4,底面圆心为O,半径为2.

(1)求这个圆锥的体积;

(2)设OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,求异面直线PM与OB所成角的正切值.

【答案】(1); (2).

【解析】

(1)利用勾股定理求得圆锥的高,然后利用体积公式计算出体积.(2)通过平行,作出直线与直线做成的角,解三角形求得两条直线所成角的正切值.

(1)在Rt△POB中,PB=4,OB=2,所以PO=2

所以求圆锥的体积V=×π×22×2

(2)取OA中点N,连结MN,PN,因为M为线段AB的中点,所以MN∥OB,于是∠PMN是异面直线PM与OB的所成角.

因为ON=OA=1,PN=,MN=OB=1,在Rt△PMN中,tan∠PMN=

即异面直线PM与OB所成角的正切值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的定义域;

2)判断的奇偶性;

3)方程是否有根?如果有根,请求出一个长度为的区间,使;如果没有,请说明理由?(注:区间的长度).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P—ABCD中,四边形ABCD为菱形,△PAD为正三角形,且E为AD的中点,BE⊥平面PAD.

(Ⅰ)求证:平面PBC⊥平面PEB;

(Ⅱ)求平面PEB与平面PDC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知a,b,N都是正数,a≠1,b≠1,证明对数换底公式:logaN=

(2)写出对数换底公式的一个性质(不用证明),并举例应用这个性质

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知a,b,N都是正数,a≠1,b≠1,证明对数换底公式:logaN=

(2)写出对数换底公式的一个性质(不用证明),并举例应用这个性质

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )

A. (,+∞)B. (]C. (0,)D. (]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为两个不同的平面,为两条不同的直线,下列命题中正确的是( )

①若,则 ②若,则

③若,则 ④若,则.

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图所示.将函数的图象向右平移个单位长度,可得到函数的图象,且图象关于原点对称.

1)求的解析式并求其单调递增区间;

2)求实数的最小值,并写出此时的表达式;

3)在(2)的条件下,设,关于的函数在区间上的最小值为-2,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)求证:直线是曲线的切线;

(Ⅲ)写出的一个值,使得函数有三个不同零点(只需直接写出数值)

查看答案和解析>>

同步练习册答案