精英家教网 > 高中数学 > 题目详情
15.若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M的坐标为(  )
A.(2,2)B.($\frac{1}{2}$,1)C.(1,$\sqrt{2}$)D.(0,0)

分析 由题意画出图形,过A作抛物线准线的垂线,交抛物线于M,则M为所求的点,由M与A的纵坐标相等求得答案.

解答 解:如图,

过A作抛物线准线的垂线,交抛物线于M,则M为所求的点,
否则,若移动M至M′,则|M′F|+|M′A|=|M′C|+|M′A|>|AC|>|AB|=|MF|+|MA|.
由M与A的纵坐标相等为2,代入抛物线方程可得横坐标x=2.
故选:A.

点评 本题考查抛物线的简单性质,考查了抛物线的定义,体现了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知直线l的参数方程为$\left\{\begin{array}{l}x=a-2t\\ y=2\sqrt{3}t\end{array}\right.$(t为参数),圆C的参数方程为$\left\{\begin{array}{l}x=4cosθ\\ y=4sinθ\end{array}$(θ为参数).
(1)当a=0时,求直线l和圆C交点的极坐标(ρ,θ)(其中ρ>0,0<θ<2π);
(2)若直线l与圆C交于P、Q两点,P、Q间的劣弧长是$\frac{8π}{3}$,求直线l的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=|{\begin{array}{l}{2cos({x+\frac{π}{3}-α})}&{2sinα}\\{sin({x+\frac{π}{3}-α})}&{cosα}\end{array}}|$
(1)求f(x)的单调增区间.
(2)函数f(x)的图象F按向量$\overrightarrow{a}$=($\frac{π}{3}$,-1)平移到F′,F′的解析式是y=f′(x).求f′(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|-2<x≤4},B={x|2-x<1},U=R,
(1)求A∩B.
(2)求A∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0),B(3,0)两点,则圆的方程为(  )
A.(x-2)2+(y+1)2=2B.(x+2)2+(y-1)2=2C.(x-1)2+(y-2)2=2D.(x-2)2+(y-1)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.要得到函数$y={(\frac{1}{2})^{2x}}$的图象,只需将函数y=41-x的图象(  )
A.向左平移1个单位B.向右平移1个单位
C.向左平移$\frac{1}{2}$个单位D.向右平移$\frac{1}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x-1)是偶函数,且在(0,+∞)上单调递增,下列说法正确的是(  )
A.$f({{2^{\frac{1}{x}}}})>f({{{({\frac{1}{8}})}^2}})>f({{{log}_2}({\frac{1}{8}})})$B.$f({{{({\frac{1}{8}})}^2}})>f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})$
C.$f({{2^{\frac{1}{x}}}})>f({{{log}_2}({\frac{1}{8}})})>f({{{({\frac{1}{8}})}^2}})$D.$f({{{({\frac{1}{8}})}^2}})>f({{{log}_2}({\frac{1}{8}})})>f({{2^{\frac{1}{x}}}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=Asin(ωx+ϕ)(A≠0,ω>0,-π<ϕ<0)在$x=\frac{2π}{3}$时取得最大值,且它的最小正周期为π,则(  )
A.f(x)的图象过点$(0,\frac{1}{2})$B.f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上是减函数
C.f(x)的一个对称中心是$({\frac{5π}{12},0})$D.f(x)的图象的一条对称轴是$x=\frac{5π}{12}$

查看答案和解析>>

同步练习册答案