精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c,若cos
A
2
=
2
5
5
,bc=5.
(Ⅰ)求△ABC的面积;
(Ⅱ)若b+c=6,求a的值.
分析:(I)由二倍角的余弦公式算出cosA=
3
5
,再由同角三角函数的关系算出sinA=
1-cos2A
=
4
5
,根据三角形的面积公式即可算出△ABC的面积;
(II)由余弦定理a2=b2+c2-2bccosA,可得a2=(b+c)2-2bc(1+cosA).再代入题中的数据加以计算,即可得到边a的值.
解答:解:(Ⅰ)∵cos
A
2
=
2
5
5

cosA=2cos2
A
2
-1=
3
5

又∵0<A<π,
sinA=
1-cos2A
=
4
5

∵bc=5,
∴△ABC的面积为S△ABC=
1
2
bcsinA=2

(Ⅱ)由(Ⅰ)的计算,可得cosA=
3
5

又∵bc=5且b+c=6,
∴根据余弦定理a2=b2+c2-2bccosA,
可得a2=(b+c)2-2bc(1+cosA)=62-2×5×(1+
3
5
)=36-16=20.
解得a=2
5
(舍负).
点评:本题给出三角形内角A一半的余弦与b、c的积,求三角的面积并依此求边a的长.着重考查了三角形的面积公式、同角三角函数的基本关系和余弦定理等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案