分析 a>0,b>0,且ab=2a+b,b=$\frac{2a}{a-1}$>0,解得a>1.变形a+b=a+$\frac{2a}{a-1}$=a-1+$\frac{2}{a-1}$+3,利用基本不等式的性质即可得出.
解答 解:∵a>0,b>0,且ab=2a+b,b=$\frac{2a}{a-1}$>0,解得a>1.
则a+b=a+$\frac{2a}{a-1}$=a-1+$\frac{2}{a-1}$+3≥3+2$\sqrt{(a-1)×\frac{2}{a-1}}$=3+2$\sqrt{2}$,当且仅当a=$\sqrt{2}$+1时取等号.
∴a+b的最小值为2$\sqrt{2}$+3.
故答案为:$2\sqrt{2}+3$.
点评 本题考查了变形利用基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 9 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | e2+3 | B. | e2+4 | C. | e+1 | D. | e+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -3 | B. | -4 | C. | 6 | D. | -6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{9}$ | B. | $\frac{2}{3}$ | C. | $-\frac{2}{3}$ | D. | $-\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 7 | B. | 9 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com