精英家教网 > 高中数学 > 题目详情
设函数f(α)=
(1+cos2α)cos(
3
2
π-α)
2cos(π+α)
+cos2
α.
(1)设∠A是△ABC的内角,且为钝角,求f(A)的最小值;
(2)设∠A,∠B是锐角△ABC的内角,且∠A+∠B=
12
,f(A)=1,BC=2,求△ABC的三个内角的大小和AC边的长.
分析:(1)利用诱导公式和二倍角公式对函数解析式整理,进而根据A的范围,利用正弦函数的性质求得函数的最大和最小值.
(2)利用f(A)=1求得A,进而利用∠A+∠B的值求得B,进而根据三角形内角和求得C,最后利用正弦定理求得AC.
解答:解:(1)f(A)=
(cos2A+1)cos(
3
2
π-A)
2cos(π+A)
+cos2A=
cos2AsinA
cosA
+cos2
A=
1
2
sin2A+cos2A=
1
2
(sin2A+cos2A+1)=
2
2
sin(2A+
π
4
)+
1
2

∵角A为钝角,
π
2
<A<π,
4
<2A+
π
4
4

∴当2A+
π
4
=
2
时,f(A)取值最小值,其最小值为
1-
2
2


(2)由f(A)=1得
2
2
sin(2A+
π
4
)+
1
2
=1,∴sin(2A+
π
4
)=
2
2

∵A为锐角,∴
π
4
<2A+
π
4
5
4
π,
∴2A+
π
4
=
4
A=
π
4

又∵A+B=
12
,∴B=
π
3
.∴C=
12

在△ABC中,由正弦定理得:
BC
sinA
=
AC
sinB
.∴AC=
BCsinB
sinA
=
6
点评:本题主要考查了三角函数的最值问题,正弦定理的应用.考查了综合分析问题的能力和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=1-
1-x2
(-1≤x≤0),则函数y=f-1(x)的图象是(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-x2,x≤1
x2+x-2,x>1
f(
1
f(2)
)
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x-a
x-1
,集合M={x|f(x)<0},P={x|f′(x)>0},若M?P,则实数a的取值范围是(  )
A、(-∞,-1)
B、(0,1)
C、(1,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x+4
x2+1
,g(x)=
6a2
x+a
,a
1
3

(1)求函数f(x)的极大值与极小值;
(2)若对函数的x0∈[0,a],总存在相应的x1,x2∈[0,a],使得g(x1)≤f(x0)≤g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1,(1≤x≤2)
x-1,(2<x≤3)
,g(x)=f(x)-ax,x∈[1,3],其中a∈(0,1),记函数g(x)的最大值与最小值的差为h(a),则h(a)的最小值是
1
2
1
2

查看答案和解析>>

同步练习册答案
关 闭