精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求在区间上的最大值;
(2)若过点存在3条直线与曲线相切,求t的取值范围;
(3)问过点分别存在几条直线与曲线相切?(只需写出结论)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

 圆轴正半轴的交点为,与曲线的交点为,直线轴的交点为
(1)用表示
(2)若数列满足 
(1)求常数的值,使得数列成等比数列;
(2)比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数为常数)的图象与轴交于点,曲线在点
的切线斜率为-1.
(I)求的值及函数的极值;
(II)证明:当时,
(III)证明:对任意给定的正数,总存在,使得当,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=.
(1)讨论的单调性;
(2)设,当时,,求的最大值;
(3)已知,估计ln2的近似值(精确到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.若
(1)求的值;
(2)求的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.
(1)讨论的单调性;
(2)设,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1) 当时,讨论的单调性;
(2)设,当若对任意存在 使求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,讨论函数的单调性;
(2)当时,在函数图象上取不同两点A、B,设线段AB的中点为,试探究函数在Q点处的切线与直线AB的位置关系?
(3)试判断当图象是否存在不同的两点A、B具有(2)问中所得出的结论.

查看答案和解析>>

同步练习册答案