精英家教网 > 高中数学 > 题目详情
18.若不等式ax2+3x+5>0在区间[1,6]上恒成立,则实数a的取值范围为a>-$\frac{23}{36}$.

分析 不等式可整理为a>-$\frac{5}{{x}^{2}}$-$\frac{3}{x}$,只需求出右式的最大值即可.利用构造函数f(x)=-$\frac{5}{{x}^{2}}$-$\frac{3}{x}$,求出导函数f'(x)=$\frac{10}{{x}^{3}}$+$\frac{3}{{x}^{2}}$>0,得出函数的单调性,求出函数的最大值即可.

解答 解:ax2+3x+5>0在区间[1,6]上恒成立,
∴a>-$\frac{5}{{x}^{2}}$-$\frac{3}{x}$,
令f(x)=-$\frac{5}{{x}^{2}}$-$\frac{3}{x}$,f'(x)=$\frac{10}{{x}^{3}}$+$\frac{3}{{x}^{2}}$>0,
∴f(x)在[1,6]上递增,
∴f(x)的最大值为f(6)=-$\frac{23}{36}$,
∴a>-$\frac{23}{36}$.
故答案为:a>-$\frac{23}{36}$.

点评 考查了恒成立问题的转化,利用构造函数,通过导函数得出函数的最大值解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在△ABC中,三个内角A,B,C所对的边为a,b,c,若ab=8,a+b=6,$\frac{{acos{B}+bcos{A}}}{c}=2cosC$,则c=(  )
A.2$\sqrt{7}$B.2$\sqrt{3}$C.4D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.cosα+$\sqrt{3}$sinα的值是(  )
A.$\frac{1}{2}$sin($\frac{π}{6}$+α)B.2sin($\frac{π}{3}$+α)C.2sin($\frac{π}{6}$+α)D.$\frac{1}{2}$cos($\frac{π}{3}$+α)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某糖厂用自动打包机打包.每包重量X(kg)服从正态分布N(100,1.22),一公司从该糖厂进货1500包,则重量在(98.8,101.2)的糖包数量为1024.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,长方体ABCD-A′B′C′D′中,化简下列各式,并在图中标出化简得到的向量:
(1)$\overrightarrow{AA′}$-$\overrightarrow{CB}$;
(2)$\overrightarrow{AB′}$+$\overrightarrow{B′C′}$+$\overrightarrow{C′D′}$;
(3)$\frac{1}{2}$$\overrightarrow{AD}$+$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{A′A}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若x4+3x2+2=a0+a1(x+1)+a2(x+1)2+a3(x+1)3+a4(x+1)4,则a2=(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-ax2,且函数f(x)在点(2,f(2))处的切线的一个方向向量是(2,-3).
(1)若关于x的方程f(x)+$\frac{3}{2}$x2=3x-b在区间[$\frac{1}{2}$,2]上恰有两个不相等的实数根,求实数b的取值范围;
(2)证明:$\sum_{k=2}^{n}$$\frac{1}{\frac{1}{2}{k}^{2}+f(k)}$>$\frac{3{n}^{2}-n-2}{2n(n+1)}$(n∈N,n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对空间任一点O和不共线三点A,B,C,能得到P,A,B,C四点共面的是(  )
A.$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$B.$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$
C.$\overrightarrow{OP}$=-$\overrightarrow{OA}$+$\frac{1}{2}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$D.以上皆错

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数ft(x)=cos2x+2tsinxcosx-sin2x
(1)若${f_1}(\frac{α}{2})=\frac{3}{4}$,试求sin2α的值.
(2)定义在$[{-\frac{π}{4},\frac{5π}{6}}]$上的函数g(x)的图象关于x=$\frac{7π}{24}$对称,且当x≤$\frac{7π}{24}$时,g(x)的图象与$y={f_{\sqrt{3}}}$(x)的图象重合.记Mα={x|g(x)=α}且Mα≠∅,试求Mα中所有元素之和.

查看答案和解析>>

同步练习册答案