精英家教网 > 高中数学 > 题目详情
6.在正方体ABCD-A1B1C1D1中,M、N分别是棱BC、CC1的中点.
( 1 )求证:MN∥面AB1D1
(文科)(2)若正方体边长为2,求三棱锥${\;}_{{A}_{1}-{B}_{1}A{D}_{1}}$的体积.
(理科)(2)求二面角D-MN-C的余弦值.

分析 (1)推导出MN∥AD1,由此能证明MN∥面AB1D1
(文)(2)三棱锥A1-B1AD1的体积V${\;}_{{A}_{1}-{B}_{1}A{D}_{1}}$=${V}_{A-{A}_{1}{B}_{1}{D}_{1}}$,由此能求出结果.
(理)(2)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出二面角D-MN-C的余弦值.

解答 证明:(1)∵在正方体ABCD-A1B1C1D1中,M、N分别是棱BC、CC1的中点,
∴MN∥BC1,∵BC1∥AD1,∴MN∥AD1
∵MN?面AB1D1,AD1?面AB1D1
∴MN∥面AB1D1
解:(文)(2)∵正方体边长为2,
三棱锥A1-B1AD1的体积:
V${\;}_{{A}_{1}-{B}_{1}A{D}_{1}}$=${V}_{A-{A}_{1}{B}_{1}{D}_{1}}$=$\frac{1}{3}×{S}_{△{A}_{1}{B}_{1}{D}_{1}}×A{A}_{1}$=$\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{4}{3}$.
(理)(2)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
D(0,0,0),M(1,2,0),N(0,2,1),C(0,2,0),
$\overrightarrow{DM}$=(1,2,0),$\overrightarrow{DN}$=(0,2,1),
设平面DMN的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DM}=x+2y=0}\\{\overrightarrow{n}•\overrightarrow{DN}=2y+z=0}\end{array}\right.$,取y=-1,得$\overrightarrow{n}$=(2,-1,2),
平面MNC的法向量$\overrightarrow{m}$=(0,1,0),
设二面角D-MN-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{3}$,
∴二面角D-MN-C的余弦值为$\frac{1}{3}$.

点评 本题考查线面平行的证明,考查三棱锥体积的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\sqrt{3}sinxcosx-{sin^2}x$.
(1)求f(x)的最小正周期及函数的单调增区间;
(2)当$x∈[0,\frac{π}{2}]$时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)与g(x)分别是定义在R上的奇函数与偶函数,函数f(x)的零点个数为F,g(x)的零点个数为G,且F、G都是常数.则下列判断正确的是(  )
A.F一定是奇数,G可能是奇数B.F可能是偶数,G一定是偶数
C.F一定是奇数,G一定是偶数D.F可能是偶数,G可能是奇数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.准线方程是$y=-\frac{1}{2}$的抛物线的标准方程是x2=2y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知两点F1(-6,0)、F2(6,0),点P为椭圆上任意一点,|PF1|+|PF2|=20
(1)求以F1、F2为焦点且过点P的椭圆的标准方程;
(2)求出椭圆的长轴的长,短轴长,顶点的坐标,离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解下列不等式:
(1)23x-2≥1;         
  (2)$lo{g_{\frac{1}{2}}}(3x+1)>{log_{\frac{1}{2}}}(1-2x)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x-\frac{1}{x})={x^2}+\frac{1}{x^2}$,则f(3)=(  )
A.11B.9C.10D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知角$θ∈(\frac{3π}{4},π)$且$sinθcosθ=-\frac{{\sqrt{3}}}{2}$,则 cosθ-sinθ的值为(  )
A.-$\sqrt{1+\sqrt{3}}$B.$\frac{{1+\sqrt{3}}}{2}$C.$\frac{{2+\sqrt{3}}}{2}$D.±$\frac{{1+\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若点(2,2)不在x-(4a2+3a-2)y-4<0表示的平面区域内,则实数a的取值范围是(  )
A.$(-1,\frac{1}{4})$B.$({-∞,-1})∪(\frac{1}{4},+∞)$C.$({-∞,-1}]∪[\frac{1}{4},+∞)$D.$[-1,\frac{1}{4}]$

查看答案和解析>>

同步练习册答案