精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,且当x>0时,f(x)>1
(1)判断并证明f(x)的单调性;
(2)若f(4)=3,解不等式f(3m2﹣m﹣2)<2.

【答案】
(1)解:f(a+b)=f(a)+f(b)﹣1,

令a=b=0,

∴f(0)=f(0)+f(0)﹣1,

∴f(0)=1,

令a=x,b=﹣x,

∴f(0)=f(x)+f(﹣x)﹣1,

∴f(﹣x)=2﹣f(x),

令x1<x2,则x2﹣x1>0,

∴f(x2﹣x1)=f(x2)+f(﹣x1)﹣1

=f(x2)+2﹣f(x1)﹣1>1,

∴f(x2)>f(x1),

故函数在R上单调递增;


(2)解:f(4)=2f(2)﹣1=3,

∴f(2)=2,

∴f(3m2﹣m﹣2)<f(2),

∴3m2﹣m﹣2<2,

∴﹣1<m<


【解析】(1)利用特殊值方法求出f(0)=1,和换元思想令a=x,b=﹣x,得出f(﹣x)=2﹣f(x),利用定义法判定函数的单调性;(2)根据定义得出f(2)=2,根据函数的单调性求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=ex﹣alnx(其中a∈R,e为自然常数)
a∈R,使得直线y=ex为函数f(x)的一条切线;
②对a<0,函数f(x)的导函数f′(x)无零点;
③对a<0,函数f(x)总存在零点;
则上述结论正确的是 . (写出所有正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx﹣a+2
(1)若关于x的不等式f(x)>0的解集是(﹣1,3),求实数a,b的值;
(2)若b=2,a>0,解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ ﹣2lnx,a∈R.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1 , x2 , 且x1<x2 , ①求a的取值范围;
②证明:f(x2)<x2﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在△ABC中,D、F分别是BC、AC的中点, = = =
(1)用 表示向量
(2)求证:B、E、F三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A,B两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A,B两人的平均成绩分别是xA , xB , 观察茎叶图,下列结论正确的是(
A.xA<xB , B比A成绩稳定
B.xA>xB , B比A成绩稳定
C.xA<xB , A比B成绩稳定
D.xA>xB , A比B成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)在(﹣∞,0)∪(0,+∞)上有定义,在(0,+∞)上是增函数,f(1)=0,又知函数g(θ)=sin2θ+mcosθ﹣2m, ,集合M={m|恒有g(θ)<0},N={m|恒有f(g(θ))<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

求函数的单调区间

时,若函数在区间内单调递减,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某养鸡场是一面靠墙,三面用铁丝网围成的矩形场地,如果铁丝网长40m,那么围成的场地面积最大为多少?

查看答案和解析>>

同步练习册答案