精英家教网 > 高中数学 > 题目详情

【题目】已知被直线分成面积相等的四部分,且截轴所得线段的长为2.

(1)的方程;

(2)若存在过点的直线与相交于两点,且,求实数的取值范围.

【答案】1;(2.

【解析】

1)先求出的圆心坐标,再根据垂径定理可求的半径,从而得到的方程

2)设,根据点的中点及上可得,根据圆与圆的位置关系可得实数满足的不等式,从而可求实数的取值范围.

解:(1)的方程为

因为被直线分成面积相等的四部分,

所以圆心一定是两互相垂直的直线的交点,

,故交点坐标为,所以.

轴所得线段的长为2,所以

所以的方程为.

(2),由题意易知点的中点,所以.

因为两点均在上,所以

, 由①②知有公共点,

从而

整理可得

解得

所以实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是平行四边形,的两个三等分点.

(1)求证平面

(2)若平面平面,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点P是直线2x+y+10=0上的动点,直线PA、PB分别与圆x2+y2=4相切于A、B两点,则四边形PAOB(O为坐标原点)面积的最小值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.

(Ⅰ)应从老、中、青员工中分别抽取多少人?

(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如右表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.

员工

项目

A

B

C

D

E

F

子女教育

×

×

继续教育

×

×

×

大病医疗

×

×

×

×

×

住房贷款利息

×

×

住房租金

×

×

×

×

×

赡养老人

×

×

×

(i)试用所给字母列举出所有可能的抽取结果;

(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经榫卯起来,如图,若正四棱柱的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为( )(容器壁的厚度忽略不计)

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面为菱形, 且的中点.

(1)求证:∥平面

(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有限集S中的元素个数记作,设AB是有限集合,给出下列命题:

1的充分不必要条件是

2的必要不充分条件是

3的充要条件是

其中假命题是(写题号)________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时,

)求

)猜想的关系,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案