精英家教网 > 高中数学 > 题目详情
2.下列命题中的假命题是(  )
A.?x0∈R,lgx0=0B.?x0∈R,tanx0=0C.?x∈R,x3>0D.?x∈R,2x>0

分析 A、B、C可通过取特殊值法来判断;D、由指数函数的值域来判断.

解答 解:对于A,当x0=1时,lg1=0,故为真命题;
对于B,当x0=0时,tan0=0,故为真命题;
对于C,当x=0时,03=0,故为假命题;
对于D根据指数函数的性质可得,?x∈R,2x>0恒成立,故为真命题.
故选:C

点评 本题考查逻辑语言与指数数、幂函数、对数函数、正切函数的值域,属容易题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-1|+|x-2|(x∈R).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;q:函数y=(m2-3)x是增函数,若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知tanA=$\frac{1}{2}$,tanB=$\frac{1}{3}$,且最长边的长为1,则△ABC最短边的长为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简求值:
(Ⅰ)${0.064^{-\frac{1}{3}}}-{({-\frac{1}{8}})^0}+{16^{\frac{3}{4}}}+{0.25^{\frac{1}{2}}}$;
(Ⅱ)$\frac{1}{2}lg25+lg2-lg\sqrt{0.1}-{log_2}9×{log_3}2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知(1.40.8a<(0.81.4a,则实数a的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:$|x-\frac{3}{2}|≤\frac{7}{2}$,q:x2-4x+4-m2<0(m<0),若?p是?q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xOy中,以x轴为始边作锐角α,它的终边与单位圆相交于点A,且点A的横坐标为$\frac{5}{13}$,则$tan(π-\frac{α}{2})$的值为-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,AB∥CD,AC⊥BD,AC与BD交于点O,且平面PAC⊥底面ABCD,E为棱PA上一点.
(1)求证:BD⊥OE;
(2)若AB=2CD,AE=2EP,求证:EO∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知圆O:x2+y2=1,直线l:y=kx+b(k>0,b>0)是圆的一条切线,且l与椭圆$\frac{{x}^{2}}{2}$+y2=1交于不同的两点A,B.
(1)求k与b的关系;
(2)若弦AB的长为$\frac{4}{3}$,求直线l的方程.

查看答案和解析>>

同步练习册答案