精英家教网 > 高中数学 > 题目详情

【题目】已知过点且离心率为椭圆的中心在原点,焦点在轴上.

(1)求椭圆的方程;

(2)设点椭圆的左准线轴的交点,过点的直线与椭圆相交于两点,记椭圆的左,右焦点分别为,上下两个顶点分别为.当线段的中点落在四边形内(包括边界)时,求直线斜率的取值范围.

【答案】(1)(2)

【解析】

试题分析:(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时需注意:第一步,根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步,联立方程,把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步,求解判别式,计算一元二次方程根.第四步,根据题设条件求解问题中结论.

试题解析:(1)依题意,设椭圆的方程为),焦距为

由题设条件知,,即,所以,由椭圆过点,则有,解得故椭圆的方程为·······7分

(2)椭圆的左准线方程为,所以点的坐标为(-4,0),

显然直线的斜率存在,所以直线的方程为

设点坐标分别为线段

中点为

·······9分

解得 ·······11分

因为是方程的两根,所以

于是 ·······12分

,所以点不可能在轴的右边.

又直线方程分别为

所以点在正方形内(包括边界)的充要条件为

·······14分

解得,此时也成立.故直线斜率的取值范围是 ······16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某食品厂定期购买面粉.已知该厂每天需用面粉6t,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨每天3元,购面粉每次需支付运费900元.
(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?
(2)若提供面粉的公司规定:当一次购买面粉不少于210t时,其价格可享受9折优惠(即原价的90%),问该厂是否考虑利用此优惠条件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,且S4=4S2a2n=2an+1.

(Ⅰ)求数列{an}的通项公式.

(Ⅱ)设数列{bn}的前n项和为TnTnλ(λ为常数)cnb2n(n∈N*)求数列{cn}的前n项和Rn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

以直角坐标系的原点为极点轴的正半轴为极轴且两个坐标系取相等的单位长度.已知直线的参数方程是为参数),曲线的极坐标方程是

(1)写出直线的普通方程和曲线的直角坐标方程

(2)设直线与曲线相交于两点的中点的极坐标为的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若有f(a)=g(b),则b的取值范围为(
A.
B.(2﹣ ,2+
C.[1,3]
D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱中,,点D是BC的中点,点上,且

1)求证: 平面

2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左顶点为,右焦点为,过点且斜率为1的直线交椭圆于另一点,交轴于点

(1)求椭圆的方程;

(2)过点作直线与椭圆交于两点,连接为坐标原点)并延长交椭圆于点,求面积的最大值及取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系内,动点与两定点 连线的斜率之积为.

(1)求动点的轨迹的方程;

(2)设点 是轨迹上相异的两点.

(Ⅰ)过点 分别作抛物线的切线 两条切线相交于点,证明:

(Ⅱ)若直线与直线的斜率之积为,证明: 为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=2,点E、F分别在边AB、DC上,M为AD的中点,且 =0,则△MEF的面积的取值范围为(

A.
B.[1,2]
C.
D.

查看答案和解析>>

同步练习册答案