【题目】已知过点且离心率为的椭圆的中心在原点,焦点在轴上.
(1)求椭圆的方程;
(2)设点是椭圆的左准线与轴的交点,过点的直线与椭圆相交于两点,记椭圆的左,右焦点分别为,上下两个顶点分别为.当线段的中点落在四边形内(包括边界)时,求直线斜率的取值范围.
【答案】(1);(2)
【解析】
试题分析:(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时需注意:第一步,根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步,联立方程,把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步,求解判别式,计算一元二次方程根.第四步,根据题设条件求解问题中结论.
试题解析:(1)依题意,设椭圆的方程为(),焦距为,
由题设条件知,,即,所以,由椭圆过点,则有,解得,,故椭圆的方程为.·······7分
(2)椭圆的左准线方程为,所以点的坐标为(-4,0),
显然直线的斜率存在,所以直线的方程为.
设点的坐标分别为,线段的
中点为,
由
得 , ① ·······9分
由,
解得 , ② ·······11分
因为是方程①的两根,所以,
于是, ·······12分
∵,所以点不可能在轴的右边.
又直线方程分别为,
所以点在正方形内(包括边界)的充要条件为
,即 ·······14分
解得,此时②也成立.故直线斜率的取值范围是. ······16分
科目:高中数学 来源: 题型:
【题目】某食品厂定期购买面粉.已知该厂每天需用面粉6t,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨每天3元,购面粉每次需支付运费900元.
(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?
(2)若提供面粉的公司规定:当一次购买面粉不少于210t时,其价格可享受9折优惠(即原价的90%),问该厂是否考虑利用此优惠条件?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)设数列{bn}的前n项和为Tn,且Tn+=λ(λ为常数),令cn=b2n(n∈N*).求数列{cn}的前n项和Rn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线的参数方程是(为参数),曲线的极坐标方程是.
(1)写出直线的普通方程和曲线的直角坐标方程;
(2)设直线与曲线相交于,两点,点为的中点,点的极坐标为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若有f(a)=g(b),则b的取值范围为( )
A.
B.(2﹣ ,2+ )
C.[1,3]
D.(1,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左顶点为,右焦点为,过点且斜率为1的直线交椭圆于另一点,交轴于点, .
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,连接(为坐标原点)并延长交椭圆于点,求面积的最大值及取最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系内,动点与两定点, 连线的斜率之积为.
(1)求动点的轨迹的方程;
(2)设点, 是轨迹上相异的两点.
(Ⅰ)过点, 分别作抛物线的切线, , 与两条切线相交于点,证明: ;
(Ⅱ)若直线与直线的斜率之积为,证明: 为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=2,点E、F分别在边AB、DC上,M为AD的中点,且 =0,则△MEF的面积的取值范围为( )
A.
B.[1,2]
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com