精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x+lg +x)的定义域是R.
(1)判断f(x)在R上的单调性,并证明;
(2)若不等式f(m3x)+f(3x﹣9x﹣4)<0对任意x∈R恒成立,求实数m的取值范围.

【答案】
(1)解:因为函数f(x)的定义域为R,对于函数f(x)定义域内的每一个x,都有

f(﹣x)=﹣x+lg( )=﹣x+lg =﹣f(x),.

所以,函数f(x)=x+lg +x)是奇函数.

设x1,x2是(0,+∞)上任意两个实数,且x1<x2,则

f(x1)﹣f(x2)=(x1﹣x2)+lg ..

由x1<x2

得x1﹣x2<0,lg <1.

于是f(x1)﹣f(x2)<0,

即f(x1)<f(x2)=(.

所以函数在(0,+∞)上是增函数,且f(x)>0,、f(0)=0,

根据奇函数的性质可得f(x)在R上的单调递增


(2)解:f(m3x)+f(3x﹣9x﹣4)<0 等价于 m3x<﹣3x+9x+4,

即 m<3x ﹣3

令t=3x,设函数g(t)=t+ ﹣3.

由函数g(t)的单调性可知最小值为1,

∴m<1.

∴实数m的取值范围(﹣∞,1)


【解析】(1)判断函数的奇偶性,再证明x>0的单调性,得出整个单调性;(2)利用函数的奇偶性和单调性对不等式进行转化,把恒成立问题转化为最值问题.
【考点精析】本题主要考查了函数单调性的判断方法的相关知识点,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左右焦点,为原点, 在椭圆上,线段轴的交点满足.

(1)求椭圆的标准方程;

(2)过椭圆右焦点作直线交椭圆于两点,交轴于点,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>b>1,若logab+logba= ,ab=ba , 则由a,b,3b,b2 , a﹣2b构成的包含元素最多的集合的子集个数是(
A.32
B.16
C.8
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,己知棱长为a,M,N分别是BD和AD的中点,则B1M与D1N所成角的余弦值为(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将三项式(x2+x+1)n展开,当n=0,1,2,3,…时,得到以下等式: (x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1

观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(1+ax)(x2+x+1)5的展开式中,x8项的系数为67,则实数a值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为上的函数,如果同时满足下列三条:

(1)对任意的,总有;(2)若 ,都有 成立;

(3)若,则.则称函数为超级囧函数.

则下列是超级囧函数的为_____________________.

(1);(2);(3);(4).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)已知点,曲线在点 处的切线与直线交于点,求为坐标原点)的面积最小时的值,并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x∈N, ∈N},则集合A用列举法表示为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为,这两条曲线在第一象限的交点为 是以为底边的等腰三角形.,记椭圆与双曲线的离心率分别为,则的取值范围是

A. B. C. D.

查看答案和解析>>

同步练习册答案