精英家教网 > 高中数学 > 题目详情

在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
(1)设平面ABE与平面ACD的交线为直线,求证:∥平面BCDE;
(2)设F是BC的中点,求证:平面AFD⊥平面AFE;
(3)求几何体ABCDE的体积.

(1)详见解析;(2)详见解析;(3)2.

解析试题分析:(1)根据两条直线同垂直于一个平面,这两条直线平行可得DC//EB,再有直线与平面平行的判定定理得出直线DC∥平面ABE,由于是平面ABE与平面ACD的交线,可得DC∥,又由直线与平面平行的判定定理∥平面BCDE.(2)先证AF⊥平面BCDE,再证FD⊥平面AFE,最后证明平面AFD⊥平面AFE.(3)由等体积公式求解,即.
【证】(1)∵DC⊥平面ABC,EB⊥平面ABC,
∴DC//EB,又∵DC平面ABE,EB平面ABE,
∴DC∥平面ABE,
平面ABE平面ACD,则DC∥
平面BCDE,CD平面BCDE,
所以∥平面BCDE.(4分)
【解】(2)在△DEF中,,由勾股定理知,
由DC⊥平面ABC,AF平面ABC,∴DC⊥AF,
又∵AB=AC,F是BC的中点,∴AF⊥BC,
又∵DC∩BC=C,DC平面BCDE ,BC平面BCDE,
∴AF⊥平面BCDE,∴AF⊥FD,又∵AF∩FE=F,∴FD⊥平面AFE,
又FD平面AFD,故平面AFD⊥平面AFE.(9分)
(3)==2.(13分)
考点:空间中的线线、线面、面面平行于垂直,三棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,分别为的中点.

(1)求证:平面;(5分)
(2)求三棱锥的体积.(7分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱柱中,已知平面平面,.
(1) 求证:
(2) 若为棱上的一点,且平面,求线段的长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在如图所示的多面体中,四边形都为矩形。

(Ⅰ)若,证明:直线平面
(Ⅱ)设分别是线段的中点,在线段上是否存在一点,使直线平面?请证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.

(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,所在平面互相垂直,且,E、F、G分别为AC、DC、AD的中点.
(1)求证:平面BCG;
(2)求三棱锥D-BCG的体积.
附:椎体的体积公式,其中S为底面面积,h为高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求证:AB1⊥面A1BD;
(2)求二面角A-A1D-B的余弦值;
(3)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,点H、G分别是线段EF、BC的中点.
(1)求证:平面AHC平面;(2)点M在直线EF上,且平面,求平面ACH与平面ACM所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.
(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.

查看答案和解析>>

同步练习册答案