精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥的底面为菱形,,且,分别是的中点.
(1)求证:∥平面
(2)过作一平面交棱于点,若二面角的大小为,求的值.
(1)详见解析;(2).

试题分析:(1)问题需要证明的是线面平行,可以考虑通过证明线线平行来证明面面平行,而题中出现了中点,因此可以考虑通过构造三角形中位线来产生平行线:取的中点,连结,
易证四边形是平行四边形,从而,而平面,平面;(2)根据图形的对称性,可以利用等腰三角形三线合一的性质来构造二面角的平面角,从而利用已知条件中二面角的大小为构造含的三角形,进而可以求得线段长度之间的关系:连结,连结,易证就是二面角的平面角,
不妨设,可求得,从而.
试题解析:(1)如图,取的中点,连结,
的中点,∴,且,又是菱形的中点,∴,且, ∴,且,四边形是平行四边形,∴,       5分
平面,平面,                        6分
∥平面.                                                  7分
连结,连结,∵,∴
,又,且,∴平面,        10分
从而,,∴就是二面角的平面角,,    12分
不妨设,∵,∴,,,
,∴,在中,,         14分
;                                              15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°.

(1)证明:平面PAB与平面PCD的交线平行于底面;
(2)求cos∠COD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
(1)设平面ABE与平面ACD的交线为直线,求证:∥平面BCDE;
(2)设F是BC的中点,求证:平面AFD⊥平面AFE;
(3)求几何体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

A、B是直二面角α-l-β的棱l上的两点,分别在α,β内作垂直于棱l的线段AC,BD,已知AB=AC=BD=1,那么CD的长为(  )
A.1B.2C.
2
D.
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,BB1=BC=2,且M是BC的中点,点N在CC1上.
(1)试确定点N的位置,使AB1⊥MN;
(2)当AB1⊥MN时,求二面角M-AB1-N的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三个互不重合的平面 ,给出下列命题:
                   ②
③若                 ④若
其中正确命题的个数为( ).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E、F分别是点A在PB、PC上的射影.给出下列结论:

①AF⊥PB;      ②EF⊥PB;
③AF⊥BC;      ④AE⊥平面PBC.
其中正确命题的序号是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱柱中,侧棱底面,底面三角形是正三角形,中点,则下列叙述正确的是(    )
A.是异面直线
B.平面
C.为异面直线,且
D.平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同的直线,α,β,γ是三个不同的平面,有下列四个命题:
①若m?β,α⊥β,则m⊥α;②若α∥β,m?α,则m∥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若α⊥γ,β⊥γ,m⊥α,则m⊥β.
其中正确命题的序号是(  )
A.①③B.①②C.③④D.②③

查看答案和解析>>

同步练习册答案