【题目】直角坐标系xoy中,椭圆的离心率为,过点.
(1)求椭圆C的方程;
(2)已知点P(2,1),直线与椭圆C相交于A,B两点,且线段AB被直线OP平分.
①求直线的斜率;②若,求直线的方程.
【答案】(1) .
(2) ①直线的斜率为除以外的任意实数.
②.
【解析】分析:(1)由离心率条件得,然后将点.代入原式得到第二个方程,联立求解即可;(2)①先得出OP的方程,然后根据点差法研究即可;②先表示出,然后联立直线和椭圆根据韦达定理代入等式求解即可.
详解:
(1)由可得,
设椭圆方程为,代入点,得,
故椭圆方程为:.
(2)①由条件知,
设,则满足,,
两式作差得:,
化简得,
因为被平分,故,
当即直线不过原点时,,所以;
当即直线过原点时,,为任意实数,但时与重合;
综上即直线的斜率为除以外的任意实数.
②当时,,故 ,
得,联立,得,舍去;
当时,设直线为,代入椭圆方程可得,(#)
所以,,
,
,
故
解得,此时方程(#)中,
故所求直线方程为.
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,D为边BC上一点,AD=6,BD=3, DC=2.
(1)若AD⊥BC,求∠BAC的大小;
(2)若∠ABC= ,求△ADC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率等于 .现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 将1至这个自然数随机填入n×n方格的个方格中,每个方格恰填一个数().对于同行或同列的每一对数,都计算较大数与较小数的比值,在这个比值中的最小值,称为这一填数法的“特征值”.
(1)若,请写出一种填数法,并计算此填数法的“特征值”;
(2)当时,请写出一种填数法,使得此填数法的“特征值”为;
(3)求证:对任意一个填数法,其“特征值”不大于.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的导函数为.若不等式对任意实数x恒成立,则称函数是“超导函数”.
(1)请举一个“超导函数” 的例子,并加以证明;
(2)若函数与都是“超导函数”,且其中一个在R上单调递增,另一个在R上单调递减,求证:函数是“超导函数”;
(3)若函数是“超导函数”且方程无实根,(e为自然对数的底数),判断方程的实数根的个数并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)求f(x)的极值;
(2)当0<x<e时,求证:f(e+x)>f(e﹣x);
(3)设函数f(x)图象与直线y=m的两交点分别为A(x1 , f(x1)、B(x2 , f(x2)),中点横坐标为x0 , 证明:f'(x0)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有的把握认为选手成绩“优秀”与文化程度有关?
优秀 | 合格 | 合计 | |
大学组 | |||
中学组 | |||
合计 |
注:,其中.
(2)若参赛选手共万人,用频率估计概率,试估计其中优秀等级的选手人数;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com