精英家教网 > 高中数学 > 题目详情

【题目】直角坐标系xoy中,椭圆的离心率为过点.

(1)求椭圆C的方程;

(2)已知点P(2,1),直线与椭圆C相交于A,B两点,且线段AB被直线OP平分.

①求直线的斜率②若,求直线的方程.

【答案】(1) .

(2) ①直线的斜率为除以外的任意实数.

.

【解析】分析:(1)由离心率条件得,然后将点.代入原式得到第二个方程联立求解即可;(2)①先得出OP的方程,然后根据点差法研究即可;②先表示出,然后联立直线和椭圆根据韦达定理代入等式求解即可.

详解:

(1)由可得

设椭圆方程为,代入点,得

故椭圆方程为:.

(2)①由条件知

,则满足

两式作差得:

化简得

因为平分,故

即直线不过原点时,,所以

即直线过原点时,为任意实数,重合;

综上即直线的斜率为除以外的任意实数.

②当时,,故

,联立,得,舍去;

时,设直线,代入椭圆方程可得,(#)

所以

解得,此时方程(#)中

故所求直线方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,D为边BC上一点,AD=6,BD=3, DC=2.

(1)若AD⊥BC,求∠BAC的大小;
(2)若∠ABC= ,求△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率等于 .现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 1个自然数随机填入n×n方格的个方格中,每个方格恰填一个数().对于同行或同列的每一对数,都计算较大数与较小数的比值,在这个比值中的最小值,称为这一填数法的特征值”.

(1),请写出一种填数法,并计算此填数法的特征值”;

(2)时,请写出一种填数法,使得此填数法的特征值

(3)求证:对任意一个填数法,其特征值不大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系内三点.

(1) 求过三点的圆的方程,并指出圆心坐标与圆的半径

(2)求过点与条件 (1) 的圆相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的导函数为.若不等式对任意实数x恒成立,则称函数超导函数”.

(1)请举一个超导函数的例子,并加以证明;

(2)若函数都是超导函数,且其中一个在R上单调递增,另一个在R上单调递减,求证:函数超导函数”;

(3)若函数超导函数且方程无实根(e为自然对数的底数),判断方程的实数根的个数并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求f(x)的极值;
(2)当0<x<e时,求证:f(e+x)>f(e﹣x);
(3)设函数f(x)图象与直线y=m的两交点分别为A(x1 , f(x1)、B(x2 , f(x2)),中点横坐标为x0 , 证明:f'(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有的把握认为选手成绩“优秀”与文化程度有关?

优秀

合格

合计

大学组

中学组

合计

注:,其中.

(2)若参赛选手共万人,用频率估计概率,试估计其中优秀等级的选手人数;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC外接圆半径是2, ,则△ABC的面积最大值为

查看答案和解析>>

同步练习册答案