精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的奇函数满足,且时有,甲、乙、丙、丁四位同学有下列结论:

甲:

乙:函数上是增函数;

丙:函数关于直线对称;

丁:若,则关于的方程上所有根之和为.

其中正确的是(

A.乙、丁B.乙、丙C.甲、乙、丙D.乙、丙、丁

【答案】B

【解析】

甲:利用奇函数的性质,结合已知的等式和函数的解析式直接求解即可;

乙:根据奇函数的性质求出函数在上的解析式,这样可以求出函数上的解析式,再利用等式可以求出函数上的解析式,并判断出单调性,再根据奇函数的单调性的性质判断出函数上的单调性;

丙:根据已知等式可以求出函数的周期,这样就可以判断是否成立即可;

丁:求出时,函数的解析式,画出函数图象在的图象,结合图象进行判断即可.

甲结论:,故甲结论不正确;

乙结论:当时,,所以当时,

.

因此当时,,显然当,函数是单调递增函数,则有,当,函数是单调递增函数,则有,所以函数在时,是单调递增函数,故由奇函数的单调性的性质可知:函数上是增函数,故乙结论是正确的;

丙结论:

,所以函数的周期为8,该函数是奇函数,所以,因此有:,所以函数关于直线对称,故丙结论是正确的;

丁结论:由上分析可知当时,,所以当时,根据周期性可知:,所以函数上的函数图象如下图所示:

由图象可知:上、上,分别关于直线对称,

而且函数与函数有四个交点,从左到右设为:,因此有,故丁结论不正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知函数是定义域为的奇函数.

1)求实数的值;

2)若,不等式上恒成立,求实数的取值范围;

3)若,且函数上最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处所截得两几何体的截面积恒等,那么这两个几何体的体积相等.已知焦点在x轴上的双曲线C的离心率e=,焦点到其渐近线的距离为2.直线y=0与y=2在第一象限内与双曲线C及其渐近线围成如图所示的图形OABN,则它绕y轴旋转一圈所得几何体的体积为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次投篮测试中,有两种投篮方案:方案甲:先在A点投篮一次,以后都在B点投篮;方案乙:始终在B点投篮.每次投篮之间相互独立.某选手在A点命中的概率为,命中一次记3分,没有命中得0分;在B点命中的概率为,命中一次记2分,没有命中得0分,用随机变量表示该选手一次投篮测试的累计得分,如果的值不低于3分,则认为其通过测试并停止投篮,否则继续投篮,但一次测试最多投篮3.

(1)若该选手选择方案甲,求测试结束后所得分的分布列和数学期望.

(2)试问该选手选择哪种方案通过测试的可能性较大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A地的天气预报显示,A地在今后的三天中,每一天有强浓雾的概率为,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:

402  978  191  925  273  842  812  479  569  683

231  357  394  027  506  588  730  113  537  779

则这三天中至少有两天有强浓雾的概率近似为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,错误的是(

A. 中,

B. 在锐角中,不等式恒成立

C. 中,若,则必是等腰直角三角形

D. 中,若,则必是等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面分别为的中点.

1)求证:平面平面

2)求证:平面,并求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.

表1:甲套设备的样本的频数分布表

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

4

19

20

5

1

图1:乙套设备的样本的频率分布直方图

(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;

甲套设备

乙套设备

合计

合格品

不合格品

合计

,求的期望.

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业积极响应国家“科技创新”的号召,大力研发人工智能产品,为了对一批新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如下表所示:

试销单价(百元)

1

2

3

4

5

6

产品销量(件)

91

86

78

73

70

附:参考公式:

参考数据:.

1)求的值;

2)已知变量具有线性相关关系,求产品销量(件)关于试销单价(百元)的线性回归方程(计算结果精确到整数位);

3)用表示用正确的线性回归方程得到的与对应的产品销量的估计值.当销售数据的残差的绝对值时,则将销售数据称为一个“有效数据”.现从这6组销售数据中任取2组,求抽取的2组销售数据都是“有效数据”的概率.

查看答案和解析>>

同步练习册答案