精英家教网 > 高中数学 > 题目详情

【题目】的方程为:为圆上任意一点,过轴的垂线,垂足为,点上,且.

(1)求点的轨迹的方程;

(2)过点的直线与曲线交于两点,点的坐标为的面积为,求的最大值,及直线的方程.

【答案】(1)(2),直线的方程为.

【解析】

(1)设点的坐标,求出的坐标,设,通过,可以得到

的关系,的关系,把代入圆的方程中,最后得到点的轨迹的方程。

(2)由题意易知直线的斜率不为0,设直线的方程为,直线方程与点的轨迹的方程联立,根据一元二次方程根与系数关系,可以得出的面积的表达式,最后利用基本不等式可以求出的最大值,直线的方程.

(1)设,则,设,因为,所以,把代入圆的方程得,所以的轨迹的方程为.

(2)由题意易知直线的斜率不为0,设直线的方程为,设

联立

.

当且仅当时取等号,

所以面积有最大值为.

所以的面积为最大时,直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],样本数据分组为[9698),[98100),[100102)[102104),[104106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).

A. 90B. 75C. 60D. 45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

讨论的单调性;

的极值点,且曲线在两点 处的切线相互平行,这两条切线在轴上的截距分别为,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l1kx-y+4=0与直线l2x+ky-3=0相交于点P,则当实数k变化时,点P到直线4x-3y+10=0的距离的最大值为(  )

A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是中国古代第一部数学专著,全书总结了战国、秦、汉时期的数学成就。“更相减损术”便出自其中,原文记载如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。”其核心思想编译成如示框图,若输入的分别为45,63,则输出的为( )

A. 2B. 3C. 5D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是中国古代第一部数学专著,全书总结了战国、秦、汉时期的数学成就。“更相减损术”便出自其中,原文记载如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。”其核心思想编译成如示框图,若输入的分别为45,63,则输出的为( )

A. 2B. 3C. 5D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,ABCDABEPC中点.

(Ⅰ)证明:BE∥平面PAD

(Ⅱ)若AB⊥平面PBC,△PBC是边长为2的正三角形,求点E到平面PAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和零点;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,讨论函数的单调区间;

(Ⅱ)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案