精英家教网 > 高中数学 > 题目详情

如图已知抛物线过点,直线两点,过点且平行于轴的直线分别与直线轴相交于点
 
(1)求的值;
(2)是否存在定点,当直线过点时,△与△的面积相等?若存在,求出点的坐标;若不存在,请说明理由.

(1)p=1;(2)详见解析.

解析试题分析:(1)因为在抛物线C上,所以将点P坐标代入方程,即可求得p=1.
(2)先假设存在定点Q,设A(x1,y1),B(x2,y2),AB的方程为y=kx+b.联立,当时,有.由题意知,
因为△PAM与△PBN的面积相等,所以,即解得.所求的定点Q即为点A,即l过Q(0,0)或Q(2,2)时,满足条件..
试题解析:(1)因为在抛物线C上,所以1=2p·,得p=1.
(2)假设存在定点Q,设A(x1,y1),B(x2,y2),AB的方程为y=kx+b.
联立,当时,有
所以()()=(*)由题意知,
因为△PAM与△PBN的面积相等,所以

也即
根据(*)式,得()2=1,解得
所求的定点Q即为点A,
即l过Q(0,0)或Q(2,2)时,满足条件.
考点:直线与抛物线的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点A(3,2), 点P是抛物线y2=4x上的一个动点,F为抛物线的焦点,求的最小值及此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线与抛物线(常数)相交于不同的两点,且为定值),线段的中点为,与直线平行的切线的切点为(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).

(1)用表示出点、点的坐标,并证明垂直于轴;
(2)求的面积,证明的面积与无关,只与有关;
(3)小张所在的兴趣小组完成上面两个小题后,小张连,再作与平行的切线,切点分别为,小张马上写出了的面积,由此小张求出了直线与抛物线围成的面积,你认为小张能做到吗?请你说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:,点A、B在抛物线C上.

(1)若直线AB过点M(2p,0),且=4p,求过A,B,O(O为坐标原点)三点的圆的方程;
(2)设直线OA、OB的倾斜角分别为,且,问直线AB是否会过某一定点?若是,求出这一定点的坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的中心为原点,长轴在轴上,离心率,又椭圆上的任一点到椭圆的两焦点的距离之和为.

(1)求椭圆的标准方程;
(2)若平行于轴的直线与椭圆相交于不同的两点,过两点作圆心为的圆,使椭圆上的其余点均在圆外.求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

巳知椭圆的离心率是.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知定点,动点N满足(O为坐标原点),,求点P的轨迹方程.
(2)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(ⅰ)设直线的斜率分别为,求证:为定值;
(ⅱ)当点运动时,以为直径的圆是否经过定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知点是离心率为的椭圆上的一点,斜率为的直线交椭圆两点,且三点互不重合.

(1)求椭圆的方程;(2)求证:直线的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆G:.过点(m,0)作圆的切线l交椭圆G于A,B两点.
(1)求椭圆G的焦点坐标和离心率;
(2)将表示为m的函数,并求的最大值.

查看答案和解析>>

同步练习册答案