精英家教网 > 高中数学 > 题目详情
9.若x.y均为正实数,且x+2y=4,则$\frac{{x}^{2}}{x+2}$+$\frac{2{y}^{2}}{y+1}$的最小值是2.

分析 令x+2=m,y+1=n,整体换元由基本不等式可得.

解答 解:令x+2=m,y+1=n,则x=m-2,y=n-1,
∵x,y均为正实数,且x+2y=4,
∴m>2且n>1,且m-2+2(n-1)=4即m+2n=8,
换元可得$\frac{{x}^{2}}{x+2}$+$\frac{2{y}^{2}}{y+1}$=$\frac{(m-2)^{2}}{m}$+$\frac{2(n-1)^{2}}{n}$
=$\frac{{m}^{2}-4m+4}{m}$+$\frac{2{n}^{2}-4n+2}{n}$
=m+$\frac{4}{m}$-4+2n+$\frac{2}{n}$-4
=$\frac{4}{m}$+$\frac{2}{n}$=$\frac{4n+2m}{mn}$=$\frac{16}{mn}$,
由8=m+2n≥2$\sqrt{2mn}$可得mn≤8,∴$\frac{16}{mn}$≥2,
当且仅当$\frac{4}{m}$=$\frac{2}{n}$即m=2n时取等号,
结合m+2n=8可解得m=4且n=2,即x=2且y=1.
故答案为:2.

点评 本题考查基本不等式求最值,整体换元是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知曲线C:y2=-4x(x>-3),直线l过点M(1,0)交曲线C于A,B两点,点P是AB的中点,EP是AB的中垂线,E点的坐标为(x0,0),试求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.用logax,logay,loga(x-y),loga(x+y)表示下列代数式:
(1)loga$\frac{xy}{\sqrt{a}}$;
(2)loga$\frac{{x}^{2}\sqrt{y}}{\root{3}{x-y}}$;
(3)loga$\sqrt{{x}^{2}-{y}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点A(2,1),B(1,3),C(t,t+1),若$\overrightarrow{AC}$⊥$\overrightarrow{BC}$,则点C的坐标为(  )
A.(3,2)B.($\frac{1}{2}$,$\frac{3}{2}$)C.(2,3)或($\frac{1}{2}$,$\frac{3}{2}$)D.(3,2)或($\frac{1}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.抛物线y2=4x上的点P与圆x2+y2-8x+15=0上的动点Q距离最小值为2$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知动点P到点F(2$\sqrt{2}$,0)的距离与到直线x=$\frac{9\sqrt{2}}{4}$的距离之比为$\frac{2\sqrt{2}}{3}$,动点P的轨迹为曲线C.
(1)求曲线C的方程
(2)若P在曲线C上,F1,F2分别为曲线C的左右焦点,且满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=t,求实数t的取值范围.
(3)过点Q(1,0)作直线l(不与x轴垂直)与曲线C交于M,N两点,与y轴交于R,若$\overrightarrow{RM}$=$λ\overrightarrow{MQ}$,$\overrightarrow{RN}$=$μ\overrightarrow{NQ}$,试判断λ+μ是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若点E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点.则空间四边形的四条边与两条对角线中与平面EFGH平行的条数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆心为O,半径为1的圆上有三点A、B、C,若7$\overrightarrow{OA}$+5$\overrightarrow{OB}$+8$\overrightarrow{OC}$=$\overrightarrow{0}$,则|$\overrightarrow{BC}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.直线y=3a与函数y=|ax+1-1|(a>0且a≠1)的图象有两个公共点,则a的取值范围是(0,$\frac{1}{3}$).

查看答案和解析>>

同步练习册答案