精英家教网 > 高中数学 > 题目详情
10.已知数列{an}的前n项和Sn=n2-9,则其通项an=$\left\{\begin{array}{l}{-8,n=1}\\{2n-1,n≥2}\end{array}\right.$.

分析 当n=1时,a1=Sn;当n≥2时,an=Sn-Sn-1

解答 解:∵Sn=n2-9,
∴当n=1时,a1=1-9=-8,
当n≥2时,an=Sn-Sn-1=(n2-9)-[(n-1)2-9]=2n-1,
∴an=$\left\{\begin{array}{l}{-8,n=1}\\{2n-1,n≥2}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{-8,n=1}\\{2n-1,n≥2}\end{array}\right.$.

点评 本题考查了数列的通项公式、递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|x2-2x-3<0,x∈R},B={x|ax2-x+3<0,x∈R};
(1)当a=2时,求A∩B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$的定义域是(  )
A.(0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞)B.($\frac{3}{2},+∞$)
C.$[1,\frac{3}{2})∪(\frac{3}{2},+∞)$D.$(1,\sqrt{10})∪(\sqrt{10},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过点P(1,0),且圆心为直线x+y-1=0与直线x-y+1=0交点,则该圆标准方程为x2+(y-1)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$f(x)=\frac{1}{{\sqrt{4-{2^x}}}}$定义域为(  )
A.(2,+∞)B.[2,+∞)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知定义在区间(0,+∞)上的函数f(x)满足$f(\frac{x_1}{x_2})=f({x_1})-f({x_2})$,且当x>1时,f(x)>0.
(1)求f(1)的值;
(2)判断f(x)的单调性,并证明;
(3)若f(2)=1,解不等式f(x2+3x)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆的一个顶点为A(0,-$\sqrt{2}$),焦点在x轴上.若右焦点到直线x-y+2$\sqrt{2}$=0的距离为3
(1)求椭圆的标准方程;
(2)P是椭圆上的点,且以点P及两个焦点为顶点的三角形面积等于1,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2+bx+c,若f(1)=0,且a>b>c,求证:方程f(x)=0必有两个不等实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C的圆心在坐标原点,且过点M(1,$\sqrt{3}$).
(1)求圆C的方程;
(2)若点P是圆C上的动点,求点P到直线x+y-4=0的距离的最大值.

查看答案和解析>>

同步练习册答案