精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px的准线的方程为x=-1,过点(1,0)作倾斜角为
π4
的直线l交该抛物线于两点(x1,y1),B(x2,y2).
求(1)p的值;(2)弦长|AB|.
分析:(1)由准线的方程为x=-1可求p的值;
(2)直线l:y=x-1,与y2=4x联立,利用抛物线过焦点的弦长公式|AB|=x1+x2+2=8.可求
解答:解:(1)由准线的方程为x=-1,可知:
p
2
=1
,即p=2
(2)易得直线l:y=x-1,与y2=4x联立
y=x-1
y2=4x

消去x得y2-4y-4=0,y1+y2=4,y1y2=-4,∴x1+x2=y1+y2+2=6,
所以:弦长|AB|=8.
点评:本题主要考查抛物线的性质及抛物线定义的运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.
(1)求a的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,准线为l.
(1)求抛物线上任意一点Q到定点N(2p,0)的最近距离;
(2)过点F作一直线与抛物线相交于A,B两点,并在准线l上任取一点M,当M不在x轴上时,证明:
kMA+kMBkMF
是一个定值,并求出这个值.(其中kMA,kMB,kMF分别表示直线MA,MB,MF的斜率)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城一模)已知抛物线y2=2px(p>0),过点M(2p,0)的直线与抛物线相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),M(2p,0),A、B是抛物线上的两点.求证:直线AB经过点M的充要条件是OA⊥OB,其中O是坐标原点.

查看答案和解析>>

同步练习册答案