精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R,则函数f(x)的单调递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z).

分析 利用二倍角的正弦和余弦公式,两角和的正弦函数公式化简,然后利用复合函数的单调性可求f(x)的单调递增区间.

解答 解:f(x)=2$\sqrt{3}$sinxcosx-2sin2x
=$\sqrt{3}$sin2x-1+cos2x
=2($\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x)-1
=2sin(2x+$\frac{π}{6}$)-1.
由-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ,k∈Z.
可得函数f(x)的单调递增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],(k∈Z).
故答案为:[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],(k∈Z).

点评 本题考查了二倍角的正弦和余弦公式,两角和的正弦函数公式的应用,考查了复合函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图所示的程序的输出结果为S=1320,则判断框中应填(  )
A.i≥9B.i≤9C.i≤10D.i≥10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z=$\frac{1-i}{i}$,则复数z的虚部为(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)={2016^x}+{log_{2016}}(\sqrt{{x^2}+1}+x)-{2016^{-x}}$+2,则关于x的不等式f(3x+1)+f(x)>4的解集为(  )
A.(-$\frac{1}{2016}$,+∞)B.(-$\frac{1}{3}$,+∞)C.(-$\frac{1}{2}$,+∞)D.(-$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)已知函数f(x)对任意的x,y∈R均有f(x+y)=f(x)•f(y),$f(1)=\frac{1}{2}$.bn=an•f(n),n∈N*,求f(n)的表达式并证明:b1+b2+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1,F2,一条直线l经过点F1与椭圆交于A,B两点.
(1)求△ABF2的周长;
(2)若l的倾斜角为$\frac{π}{4}$,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.从6名同学中选派4人分别参加数学、物理、化学、生物四科知识竞赛,若其中甲、乙两名同学不能参加生物竞赛,则选派方案共有(  )种.
A.336B.408C.240D.264

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,BC=7,cosA=$\frac{1}{5}$,sinC=$\frac{2\sqrt{6}}{7}$,若动点P满足$\overrightarrow{AP}$=2$λ\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),则点P的轨迹与直线AB,AC所围成的封闭区域的面积为(  )
A.3$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如表:
平均成绩$\overline x$89898685
方差S22.13.52.15.6
从这四人中选择一人参加国际奥林匹克数学竞赛,最佳人选是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案