【题目】若正实数a,b满足 + = ,则ab+a+b的最小值为 .
科目:高中数学 来源: 题型:
【题目】为了检测某种产品的质量(单位:千克),抽取了一个容量为N的样本,整理得到的数据作出了频率分布表和频率分布直方图如图:
分组 | 频数 | 频率 |
[17.5,20) | 10 | 0.05 |
[20,225) | 50 | 0.25 |
[22.5,25) | a | b |
[25,27.5) | 40 | c |
[27.5,30] | 20 | 0.10 |
合计 | N | 1 |
(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求频率分布直方图中d的值;
(Ⅲ)从该产品中随机抽取一件,试估计这件产品的质量少于25千克的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sinxcosx﹣cos2x+ ,(x∈R).
(1)若对任意x∈[﹣ , ],都有f(x)≥a,求a的取值范围;
(2)若先将y=f(x)的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移 个单位得到函数y=g(x)的图象,求函数y=g(x)﹣ 在区间[﹣2π,4π]内的所有零点之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(1,2), =(cosα,sinα),设 = +t (t为实数).
(1)若 ,求当| |取最小值时实数t的值;
(2)若 ⊥ ,问:是否存在实数t,使得向量 ﹣ 和向量 的夹角为 ,若存在,请求出t;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图四棱锥E﹣ABCD中,四边形ABCD为平行四边形,△BCE为等边三角形,△ABE是以∠A为直角的等腰直角三角形,且AC=BC. (Ⅰ)证明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A﹣DE﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一个周期的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 | π | 2π | ||
x | x1 | x2 | x3 | ||
Asin(ωx+φ)+B | 0 | 0 | ﹣ | 0 |
(1)请求出上表中的x1 , x2 , x3 , 并直接写出函数f(x)的解析式;
(2)若3sin2 ﹣ mf( ﹣ )≥m+2对任意x∈[0,2π]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑,如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体毛坯的三视图,第一次切削,将该毛坯得到一个表面积最大的长方体,第二次切削沿长方体的对角面刨开,得到两个三棱柱,第三次切削将两个三棱柱分别沿棱和表面的对角线刨开得到两个鳖臑和两个阳马,则阳马与鳖臑的体积之比为( )
A.3:1
B.2:1
C.1:1
D.1:2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com