精英家教网 > 高中数学 > 题目详情
7.“开门大吉”是某电视台推出的游戏节目,选手面对1-8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,在一次场外调查中,发现参赛选手多数分为两个年龄段:20-30;30-40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)填写下面2×2列联表:判断是否有90%的把握认为猜对歌曲名称是否与年龄有关,说明你的理由:(下面的临界值表供参考)
P(K2≥k00.100.050.0100.005
 k02.7063.8416.6357.879
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)  
年龄/正误正确错误合计
20-30   
30-40   
合计   
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20-30岁之间的概率.(已知从6人中取3人的结果有20种)

分析 (1)根据所给的二维条形图得到列联表,利用公式求出k2=3>2.706,即可得出结论;
(2)按照分层抽样方法可知:20~30(岁)抽取:2(人);30~40(岁)抽取:4(人),在上述抽取的6名选手中,年龄在20~30(岁)有2人,年龄在30~40(岁)有4人,求出基本事件数,即可求出至少有一人年龄在20~30岁之间的概率.

解答 解:(1)

年龄/正误正确错误合计
20~30103040
30~40107080
合计20100120
k2=$\frac{120×(10×70-10×30)^{2}}{20×100×40×80}$=3>2.706
∴有90%的把握认为猜对歌曲名称与否和年龄有关.-------------(8分)
(2)设事件A为3名幸运选手中至少有一人在20~30岁之间,由已知得20~30岁之间的人数为2人,30~40岁之间的人数为4人,从6人中取3人的结果有20种,事件A的结果有16种,P(A)=$\frac{16}{20}$=$\frac{4}{5}$----------(12分)

点评 本题考查独立性检验知识的运用,考查分层抽样,考查概率知识,考查学生分析解决问题的能力,确定基本事件总数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,输出的S值为(  )
A.2B.$\frac{3}{2}$C.$\frac{5}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(-2,4),那么|$\overrightarrow{a}$+3$\overrightarrow{b}$|的值是(  )
A.13B.12C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在数列{an}中,已知对于n∈N*,有a1+a2+a3+…+an=2n-1,则a${\;}_{1}^{2}$+a${\;}_{2}^{2}$+…+a${\;}_{n}^{2}$=(  )
A.4n-1B.$\frac{1}{3}$(4n-1)C.$\frac{1}{3}$(2n-1)D.(2n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,若A=2B,a:b=$\sqrt{2}:1$,则A=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设数列{an}中,已知a1=1,an=$\frac{1}{2{a}_{n-1}}$(n>1),则a2=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.据媒体报道:某市4月份空气质量优良,高居全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1~4月份中30天空气综合污染指数,统计数据如下:
表1:空气质量级别表
空气污染指数0~5051~100101~150151~200201~250251~300大于300
空气质量级别Ⅰ级(优)Ⅱ级(良)Ⅲ1(轻微污染)Ⅲ2(轻度污染)Ⅳ1(中度污染)Ⅳ2(中度重污染)Ⅴ(重度污染)
空气综合污染指数
30,32,40,42,45,45,77,83,85,87,90,113,127,153,167,
38,45,48,53,57,64,66,77,92,98,130,184,201,235,243.
请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:
(1)填写频率分布表中未完成的空格;
分组频数统计频数频率
0~500.30
51~100120.40
101~150
151~20030.10
201~25030.10
合计30301.00
(2)写出统计数据中的中位数、众数;
(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.

查看答案和解析>>

科目:高中数学 来源:2017届广西陆川县中学高三9月月考数学(文)试卷(解析版) 题型:填空题

中,,点边上,,则___________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,点E为矩形ABCD边CD的中点,AB=2,AD=$\sqrt{2}$,将△ADE沿AE折起到△AD1E的位置,使得平面AD1E⊥平面ABCE,连接BD1、CD1,得到如图乙所示的几何体.
(1)证明:AE⊥BD1
(2)求点C到平面ABD1的距离.

查看答案和解析>>

同步练习册答案