【题目】某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了人,回答问题统计结果如图表所示.
组号 | 分组 | 回答正确 | 回答正确的人数 |
第1组 | 5 | 0.5 | |
第2组 | 0.9 | ||
第3组 | 27 | ||
第4组 | 0.36 | ||
第5组 | 3 |
(Ⅰ) 分别求出的值;
(Ⅱ) 从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?
(Ⅲ) 在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
【答案】(Ⅰ) ;(Ⅱ)第2组抽人;第3组抽3人;第4组抽1人;(III).
【解析】
(Ⅰ)由频率表中第1组数据可知,第1组总人数为,再结合频率分布直方图可知∴=100×0.020×10×0.9=18,b=100×0.025×10×0.36=9,,
(Ⅱ)第2,3,4组中回答正确的共有54人.∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人, 第3组:人, 第4组:人.
(Ⅲ)设第2组的2人为、,第3组的3人为、、,第4组的1人为,则从6人中抽2人所有可能的结果有:,,,,,,,,,,,,,,,共15个基本事件,其中第2组至少有1人被抽中的有,,,,,,,,这9个基本事件.
∴第2组至少有1人获得幸运奖的概率为
本题考查分层抽样方法、统计基础知识与等可能事件的概率.注意等可能事件中的基本事件数的准确性.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面,,.
(Ⅰ)求证:平面面;
(Ⅱ)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,已知平面,且四边形为直角梯形,,,.
(1)证明:;
(2)求平面与平面所成锐二面角的余弦值;
(3)点是线段上的动点,当直线与所成的角最小时,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系中,过点的直线l的参数方程为 (t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为与曲线C相交于不同的两点M,N.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx+c(a>0),且f(1).
(1)求证:函数f(x)有两个不同的零点;
(2)设x1,x2是函数f(x)的两个不同的零点,求|x1﹣x2|的取值范围;
(3)求证:函数f(x)在区间(0,2)内至少有一个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)当时,解不等式;
(2)若关于的方程有两个不等的实数根,求的取值范围;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,直线分别交轴、轴的正半轴于、两点,为坐标原点.
(1)若直线方程为(),且,求的值;
(2)若直线经过点,设的斜率为,为线段的中点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知不共线向量,满足||=3,||=2,(23)(2)=20.
(1)求;
(2)是否存在实数λ,使λ与2共线?
(3)若(k2)⊥(),求实数k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com