【题目】已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
【答案】(1){x|x≤1或x≥4};(2)[-3,0]
【解析】试题分析:(1)解绝对值不等式首先分情况去掉绝对值不等式组,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于-2-x≤a≤2-x在[1,2]上恒成立,由此求得求a的取值范围
试题解析:(1)当a=-3时,f(x)=
当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;
当2<x<3时,f(x)≥3无解;
当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4.
所以f(x)≥3的解集为{x|x≤1或x≥4}. 6分
(2)f(x)≤|x-4||x-4|-|x-2|≥|x+a|.
当x∈[1,2]时,|x-4|-|x-2|≥|x+a|(4-x)-(2-x)≥|x+a|
-2-a≤x≤2-a,
由条件得-2-a≤1且2-a≥2,解得-3≤a≤0,
故满足条件的实数a的取值范围为[-3,0].
科目:高中数学 来源: 题型:
【题目】某地高中年级学生某次身体素质体能测试的原始成绩采用百分制,已知这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见下表,并规定: 三级为合格, 级为不合格
为了了解该地高中年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计,按照分组作出频率分布直方图如图所示,样本中分数在分及以上的所有数据的茎叶图如图所示.
(Ⅰ) 求及频率分布直方图中的值;
(Ⅱ) 根据统计思想方法,以事件发生的频率作为相应事件发生的概率,若在该地高中学生中任选人,求至少有人成绩是合格等级的概率;
(Ⅲ)上述容量为的样本中,从两个等级的学生中随机抽取了名学生进行调研,记为所抽取的名学生中成绩为等级的人数,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产和两种产品,按计划每天生产各不得少于10吨,已知生产产品吨需要用煤9吨,电4度,劳动力3个(按工作日计算).生产产品1吨需要用煤4吨,电5度,劳动力10个,如果产品每吨价值7万元, 产品每吨价值12万元,而且每天用煤不超过300吨,用电不超过200度,劳动力最多只有300个,每天应安排生产两种产品各多少才是合理的?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.
(Ⅰ)设为曲线上任意一点,求的取值范围;
(Ⅱ)若直线与曲线交于两点, ,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的通项公式是.
(1)判断是否是数列中的项;
(2)试判断数列中的各项是否都在区间内;
(3)试判断在区间内是否有无穷数列中的项?若有,是第几项?若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com