精英家教网 > 高中数学 > 题目详情

【题目】国际羽毛球比赛规则从20065月开始,正式决定实行21分的比赛规则和每球得分制,并且每次得分者发球,所有单项的每局获胜分至少是21分,最高不超过30分,即先到21分的获胜一方赢得该局比赛,如果双方比分为时,获胜的一方需超过对方2分才算取胜,直至双方比分打成时,那么先到第30分的一方获胜.在一局比赛中,甲发球赢球的概率为,甲接发球贏球的概率为,则在比分为,且甲发球的情况下,甲以赢下比赛的概率为(

A.B.C.D.

【答案】B

【解析】

设双方2020平后的第k个球甲贏为事件Akk123),

P(甲以赢)=PA2A3A4+P),由此利用独立事件乘法概率公式能求出甲以赢的概率.

设双方2020平后的第k个球甲获胜为事件Akk123),

P(甲以赢)=PA2A3A4+P)=PPA2PA3PA4+PA1PPA3PA4)=(+)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况单位:百元,相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:

组别

频数

10

390

400

188

12

求所得样本的中位数精确到百元

根据样本数据,可近似地认为市民的旅游费用支出服从正态分布,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;

若年旅游消费支出在百元以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X的分布列与数学期望.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程为为参数,.

Ⅰ)当时,判断直线与曲线的位置关系;

Ⅱ)设直线轴的交点为,且与曲线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,的中点,且.

(1)求证:平面(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019924日国家统计局在庆祝中华人民共和国成立70周年活动新闻中心举办新闻发布会指出,1952年~2018年,我国GDP679.1亿元跃升至90.03万亿元,实际增长174倍;人均GDP119元提高到6.46万元,实际增长70倍.全国各族人民,砥砺奋进,顽强拼搏,实现了经济社会的跨越式发展.如图是全国2010年至2018GDP总量(万亿元)的折线图.

注:年份代码19分别对应年份20102018.

1)由折线图看出,可用线性回归模型拟合与年份代码的关系,请用相关系数加以说明;

2)建立关于的回归方程(系数精确到0.01),预测2019年全国GDP的总量.

附注:参考数据:.

参考公式:相关系数

回归方程中斜率和截距的最小二乘法估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象的一个对称中心为,则下列说法正确的是(

A.直线是函数的图象的一条对称轴

B.函数上单调递减

C.函数的图象向右平移个单位可得到的图象

D.函数上的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,底面四边形为直角梯形,为线段上一点.

(1)若,则在线段上是否存在点,使得平面?若存在,请确定点的位置;若不存在,请说明理由

(2)己知,若异面直线角,二而角的余弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(1) 求抛物线的方程;

(2) 当点为直线上的定点时,求直线的方程;

(3) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在的函数的导函数为.

证明:(1)在区间存在唯一极小值点;

2有且仅有2个零点.

查看答案和解析>>

同步练习册答案