精英家教网 > 高中数学 > 题目详情

【题目】已知平面直角坐标系上一动点到点的距离是点到点的距离的2倍。

(1)求点的轨迹方程;

(2)若点与点关于点对称,求,两点间距离的最大值。

(3)若过点的直线与点的轨迹相交于两点,,则是否存在直线,使 取得最大值,若存在,求出此时的方程,若不存在,请说明理由。

【答案】(1);(2)14;(3)答案见解析.

【解析】试题分析:

(1)由题意结合点到直线距离公式可得关于x,y的等式,整理变形可得轨迹方程为

(2)设由对称性可得点Q的轨迹方程为圆

(3)由题意知的斜率一定存在,设直线的斜率为联立直线与圆的方程可得满足题意时:.由点到直线距离公式结合圆的弦长公式可得其中据此可得满足题意时直线的斜率为,直线的方程为.

试题解析:

(1)由已知,

,即

(2)设,因为点与点关于点对称,

点坐标为

∵点在圆上运动,∴点的轨迹方程为,

即:

(3)由题意知的斜率一定存在,设直线的斜率为,且

联立方程:

又∵直线不经过点,则.

∵点到直线的距离

∴当时,取得最大值2,此时,

∴直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】运行如图所示的程序框图,则输出结果为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若函数 上为增函数,求正实数 的取值范围;
(2)当 时,求函数 上的最值;
(3)当 时,对大于1的任意正整数 ,试比较 的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,点O为坐标原点,点 ,向量 =(0,1),θn是向量 的夹角,则使得 恒成立的实 数t的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数

(1)若,求函数的值域;

(2)设的三个内角所对的边分别为,若A为锐角且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种汽车购买时费用为16.9万元,每年应交付保险费、汽油费共0.9万元,汽车的维修保养费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……依等差数列逐年递增.

(1)求该车使用了3年的总费用(包括购车费用)为多少万元?

(2)设该车使用年的总费用(包括购车费用)为),试写出的表达式;

(3)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,点O为坐标原点,点 ,向量 =(0,1),θn是向量 的夹角,则使得 恒成立的实 数t的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求函数的值域

(Ⅱ)若函数单调,求实数的取值范围;

是函数为实数)的其中两个零点,且,求当变化时, 的最大值.

查看答案和解析>>

同步练习册答案