精英家教网 > 高中数学 > 题目详情
19.已知直线y=kx+1与圆x2+y2-kx-my-5=0交于M,N两点,且M,N关于直线x+y=0对称,若P(a,b)为平面区域$\left\{\begin{array}{l}{kx-my-3≤0}\\{kx-y+1≤0}\\{x≥0}\end{array}\right.$上的任意一点,则$\frac{b+1}{a+1}$的最大值是4.

分析 先求出m,k,再利用区域,求出$\frac{b+1}{a+1}$的最大值.

解答 解:由题意可知,直线x+y=0过圆心,且与直线y=kx+1垂直,
∴k=1,
圆x2+y2-kx-my-5=0的圆心坐标($\frac{1}{2}$,$\frac{m}{2}$)在直线x+y=0上,所以m=-1,
平面区域$\left\{\begin{array}{l}{kx-my-3≤0}\\{kx-y+1≤0}\\{x≥0}\end{array}\right.$为$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y+1≤0}\\{x≥0}\end{array}\right.$,
$\frac{b+1}{a+1}$表示区域内的点(a,b),与(-1,-1)连线的斜率,由图形可得(0,3)处取得最大值4,
故答案为:4

点评 本题考查对称知识,圆的一般方程,考查线性规划知识,考查学生分析解决问题的能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若点A(2,3)与点B(1,y0)位于直线l:x-2y+5=0的两侧,则y0的取值范围是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙两人为了响应政府“节能减排”的号召,决定购置某品牌空调各一台.经了解,目前市场上销售此品牌空调有A,B,C三种型号,甲从A,B,C三类型号中挑选,乙从B,C两种型号中挑选,甲、乙二人选择各类车型的概率如下表:

ABC
$\frac{1}{5}$pq
$\frac{1}{4}$$\frac{3}{4}$
若甲、乙都选C型号的概率为$\frac{3}{10}$.
(1)求p,q的值;
(2)某市对购买此品牌空调进行补贴,补贴标准如下表:
型号ABC
补贴金额(百元/台)345
记甲、乙两人购空调所获得财政补贴的和为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(Ⅰ)运用S(α+β)及C(α+β)证明:tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$;
(Ⅱ)在△ABC中,证明tanA+tanB+tanC=tanAtanBtanC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f′(x)的偶函数f(x)(x∈R且x≠0)的导函数,f(2)=0且当x>0时,xf′(x)-f(x)>0,则使f(x)<0成立的x的取值范围为(  )
A.(-∞,-2)∪(0,2)B.(-2,0)∪(0,2)C.(-2,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知复数z1=$\frac{1}{a+2}$+(a2-1)i,z2=2+2(a+1)i(a∈R,i是虚数单位).
(1)若复数z1-z2在复平面上对应点落在第一象限,求实数a的取值范围;
(Ⅱ)若虚数z1是实系数一元二次方程4x2-4x+m=0的根,求实数m值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=$\left\{\begin{array}{l}cosπx{\;}_{\;}x>0\\ f(x+1)x≤0\end{array}$,则$f(\frac{1}{3})+f(-\frac{1}{3})$的值等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有5道题中,有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为(  )
A.$\frac{3}{5}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线2x+3y-1=0与直线4x+my+11=0平行,则它们之间的距离为(  )
A.$\frac{{\sqrt{13}}}{2}$B.$\frac{{2\sqrt{13}}}{13}$C.$\frac{{6\sqrt{13}}}{13}$D.$\frac{{12\sqrt{13}}}{13}$

查看答案和解析>>

同步练习册答案