精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知抛物线的焦点为,准线为是抛物线上上一点,且点的横坐标为.

1)求抛物线的方程;

2)过点的直线与抛物线交于两点,过点且与直线垂直的直线与准线交于点,设的中点为,若四点共圆,求直线的方程.

【答案】12

【解析】

1)由抛物线的定义可得,即可求出,从而得到抛物线方程;

2)设直线的方程为,代入,得.

,列出韦达定理,表示出中点的坐标,若四点共圆,再结合,得,则即可求出参数,从而得解;

解:(1)由抛物线定义,得,解得

所以抛物线的方程为.

2)设直线的方程为,代入,得.

,则.

,得

所以.

因为直线的斜率为,所以直线的斜率为,则直线的方程为.

解得.

四点共圆,再结合,得

,解得

所以直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解手机品牌的选择是否和年龄的大小有关,随机抽取部分华为手机使用者和苹果机使用者进行统计,统计结果如下表:

年龄 手机品牌

华为

苹果

合计

30岁以上

40

20

60

30岁以下(含30岁)

15

25

40

合计

55

45

100

附:

P

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

根据表格计算得的观测值,据此判断下列结论正确的是(

A.没有任何把握认为手机品牌的选择与年龄大小有关

B.可以在犯错误的概率不超过0.001的前提下认为手机品牌的选择与年龄大小有关

C.可以在犯错误的概率不超过0.01的前提下认为手机品牌的选择与年龄大小有关

D.可以在犯错误的概率不超过0.01的前提下认为手机品牌的选择与年龄大小无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像相交于点两点,若动点满足,则点的轨迹方程是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新高考取消文理科,实行模式,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人,并把调查结果制成下表:

年龄(岁)

频数

5

15

10

10

5

5

了解

4

12

6

5

2

1

1)把年龄在称为中青年,年龄在称为中老年,请根据上表完成列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?

了解新高考

不了解新高考

总计

中青年

中老年

总计

附:.

0.050

0.010

0.001

3.841

6.635

10.828

2)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率,其右焦点为.

1)求椭圆的方程;

2)过作夹角为的两条直线分别交椭圆,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线和曲线交于AB两点(点A在第二象限).过A作斜率为的直线交曲线M于点C(不同于点A),过点作斜率为的直线交曲线EF两点,且

I)求的取值范围;

(Ⅱ)设的面积为S,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有如下命题,其中真命题的标号为(

A.若幂函数的图象过点,则

B.函数,且)的图象恒过定点

C.函数有两个零点

D.若函数在区间上的最大值为4,最小值为3,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,各项为正的等比数列的前项和为__________.在①;②;③这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】)过点,离心率为,其左、右焦点分别为,且过焦点的直线交椭圆于.

(Ⅰ)求椭圆的方程;

(Ⅱ)若点的坐标为,设直线与直线的斜率分别为,试证明:.

查看答案和解析>>

同步练习册答案