精英家教网 > 高中数学 > 题目详情
已知函数为自然对数的底数).
(1)当时,求的单调区间;
(2)对任意的恒成立,求的最小值;
(3)若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.
(1)函数的单调减区间为单调增区间为;(2)实数的最小值为
(3)实数的取值范围是.

试题分析:(1)把代入函数的解析式,直接利用导数求函数在定义域上的单调区间;(2)利用参数分离法将问题中的不等式等价转化为上恒成立,即,进而求出参数的取值范围,从而求出的最小值;(3)先利用导数求出函数上的值域,利用导数研究函数的单调性,并求出方程的唯一根,将条件“对于任意给定的
,在总存在两个不同的,使得”转化为“函数在区间上存在唯一极值点,即,且函数在区间和区间上的值域均包含函数在区间上的值域”,从而列出相应的不等式进行求解参数的取值范围.
试题解析:(1)当时,
,由
的单调减区间为,单调增区间为
(2)即对恒成立,
,则
再令
上为减函数,于是
从而,,于是上为增函数,
故要恒成立,只要,即的最小值为
(3),当时,,函数单调递增,
时,,函数单调递减,

所以,函数上的值域为.
时,不合题意;
时,
,    ①
此时,当变化时,的变化情况如下:









单调减
最小值
单调增

所以,对任意给定的,在区间上总存在两个不同的
使得成立,当且仅当满足下列条件
,即 

,令,得
时,,函数单调递增,
时,,函数单调递减,
所以,对任意,有
即②对任意恒成立,
由③式解得:,   ④
综合①④可知,当时,对任意给定的
总存在两个不同的,使得成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,(其中),设.
(Ⅰ)当时,试将表示成的函数,并探究函数是否有极值;
(Ⅱ)当时,若存在,使成立,试求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 (为实常数) .
(1)当时,求函数上的最大值及相应的值;
(2)当时,讨论方程根的个数.
(3)若,且对任意的,都有,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ)若,证明当时,函数的图象恒在函数图象的上方.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,函数的图像在点处的切线平行于轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数的图象交于两点,(),证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)写出函数的单调区间;
(2)若恒成立,求实数的取值范围;
(3)若函数上值域是,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中a为正实数.
(l)若x=0是函数的极值点,讨论函数的单调性;
(2)若上无最小值,且上是单调增函数,求a的取值范
围;并由此判断曲线与曲线交点个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为,且是偶函数, 则曲线:y=f(x)在点(2,f(2))处的切线方程为              .  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数在区间上恰有一个零点,则实数的取值范围是_____.

查看答案和解析>>

同步练习册答案