精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于两点,设点,已知,求实数的值.

【答案】(1)直线: ,曲线:(2)

【解析】

1)在直线的参数方程中消去参数t得直线的一般方程,在曲线的极坐标方程为中先两边同乘,得曲线的直角坐标方程;(2)将直线的参数方程直接代入曲线的直角坐标方程中,得到韦达定理,由,列方程求出答案.

解:(1)因为直线的参数方程为

消去t化简得直线的普通方程:

因为

所以

所以曲线的直角坐标方程为

2)将代入

,∴,满足

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥S-ABCD中,底面ABCD为长方形,底面,其中的可能取值为:

1)求直线与平面所成角的正弦值;

2)若线段CD上能找到点E,满足的点有两个,分别记为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了打好精准扶贫攻坚战某村扶贫书记打算带领该村农民种植新品种蔬菜,可选择的种植量有三种:大量种植,适量种植,少量种植.根据收集到的市场信息,得到该地区该品种蔬菜年销量频率分布直方图如图,然后,该扶贫书记同时调查了同类其他地区农民以往在各种情况下的平均收入如表1(表中收入单位:万元):

1

销量

种植量

大量

8

-4

适量

9

7

0

少量

4

4

2

但表格中有一格数据被墨迹污损,好在当时调查的数据频数分布表还在,其中大量种植的100户农民在市场销量好的情况下收入情况如表2

收入(万元)

11

11.5

12

12.5

13

13.5

14

14.5

15

频数(户)

5

10

15

10

15

20

10

10

5

(Ⅰ)根据题中所给数据,请估计在市场销量好的情况下,大量种植的农民每户的预期收益.(用以往平均收入来估计);

(Ⅱ)若该地区年销量在10千吨以下表示销量差,在10千吨至30千吨之间表示销量中,在30千吨以上表示销量好,试根据频率分布直方图计算销量分别为好、中、差的概率(以频率代替概率);

(Ⅲ)如果你是这位扶贫书记,请根据(Ⅰ)(Ⅱ),从农民预期收益的角度分析,你应该选择哪一种种植量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别为,焦距为6.

(1)求椭圆的方程.

(2)过椭圆左顶点的两条斜率之积为的直线分别与椭圆交于点.试问直线是否过某定点?若过,求出该点的坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)对任意的成立,求实数的取值范围;

(2)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在梯形中,的中点,线段交于点(如图1.沿折起到的位置,使得二面角为直二面角(如图2.

1)求证:平面

2)线段上是否存在点,使得与平面所成角的正弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,的面积为.点为线段的中点.

(1)在线段上找一点,使得平面平面,并证明;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为为椭圆上不与左右顶点重合的任意一点,分别为的内心、重心,当轴时,椭圆的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于的一元二次方程

(1)若是从0,1,2,3,4五个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;

(2)若是从区间上任取的一个数,是从区间上任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

同步练习册答案