精英家教网 > 高中数学 > 题目详情

已知直线l的方程为x=-2,且直线l与x轴交于点M,圆O:x2+y2=1 与x轴交于A,B两点.
(1)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;
(2)过M点作直线l1与圆相切于点N,设(2)中椭圆的两个焦点分别为F1F2,求三角形△NF1F2面积.

解:(1)设椭圆方程为,半焦距为c,则
∵椭圆与圆O恰有两个不同的公共点,根据椭圆与圆的对称性,
则a=1或b=1
当a=1时,c=,b2=a2-c2=
∴所求椭圆方程为
当b=1时,b2+c2=2c,∴c=1,∴a2=b2+c2=2
∴所求椭圆方程为
(2)设切点为N,则由题意得,在Rt△MON中,MO=2,ON=1,则∠NMO=30°,
N点的坐标为
若椭圆为,其焦点F1,F2分别为A(-1,0),B(1,0),
=
若椭圆为,其焦点为
此时=
分析:(1)由题意设出焦点在x轴上的椭圆的标准方程,根据椭圆经过y轴上的点(0,1),分长半轴等于1和短半轴等于1两种情况求解椭圆的标准方程;
(2)由平面几何知识求出点N的坐标,求出两个椭圆的焦点坐标,直接利用三角形的面积公式求三角形△NF1F2面积.
点评:本题考查了椭圆的简单几何性质,考查了圆与圆锥曲线的综合,考查了分类讨论的数学思想方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知直线l的方程为x=-2,且直线l与x轴交于点M,
圆O:x2+y2=1与x轴交于A,B两点.
(Ⅰ)过M点的直线l1交圆于P、Q两点,且圆孤PQ恰为圆周的
14
,求直线l1的方程;
(Ⅱ)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;
(Ⅲ)过M点的圆的切线l2交(Ⅱ)中的一个椭圆于C、D两点,其中C、D两点在x轴上方,求线段CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湛江一模)(坐标系与参数方程选做题)已知直线l的方程为
x=t-1
y=t+1
(t为参数),以坐标原点为极点,x轴正方向为极轴的极坐标中,圆的极坐标方程为ρ=2,则l与该圆相交所得弦的弦长为
2
2
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的方程为x=-
3
,则其倾斜角等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的方程为
x=2-4 t
y=1+3 t
,则直线l的斜率为
-
3
4
-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的方程为x-2y-2=0,数列{an}满足a1=2,其前n项和为Sn,点(an+1,Sn)在直线l上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)在an和an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,令Tn=
1
d1
+
1
d2
+…+
1
dn
,试证明Tn
15
16

查看答案和解析>>

同步练习册答案