精英家教网 > 高中数学 > 题目详情
7.已知定义域为(-∞,0)∪(0,+∞)的函数f(x)是奇函数,并且在(-∞,0)上是增函数,若f(-3)=0.
(1)求f(2x-1)<0的解集;
(2)求$\frac{x}{f(x)}<0$的解集.

分析 (1)由题意,函数在(0,+∞)上是增函数,f(3)=0,化f(2x-1)<0为具体的不等式,即可求f(2x-1)<0的解集;
(2)$\frac{x}{f(x)}<0$,可化为$\left\{\begin{array}{l}{x<0}\\{-3<x<0或x>3}\end{array}\right.$或$\left\{\begin{array}{l}{x>0}\\{x<-3或0<x<3}\end{array}\right.$,即可求$\frac{x}{f(x)}<0$的解集.

解答 解:(1)由题意,函数在(0,+∞)上是增函数,f(3)=0.
∵f(2x-1)<0,
∴f(2x-1)<0,
∴2x-1<-3或0<2x-1<3
∴x<-1或$\frac{1}{2}$<x<2,
∴f(2x-1)<0的解集为{x|x<-1或$\frac{1}{2}$<x<2};
(2)$\frac{x}{f(x)}<0$,可化为$\left\{\begin{array}{l}{x<0}\\{-3<x<0或x>3}\end{array}\right.$或$\left\{\begin{array}{l}{x>0}\\{x<-3或0<x<3}\end{array}\right.$,
∴x<0或0<x<3
∴$\frac{x}{f(x)}<0$的解集是{x|x<0或0<x<3}.

点评 本题考查函数的单调性与奇偶性的结合,考查学生解不等式的能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知${a}^{-\frac{1}{2}}$+${a}^{\frac{1}{2}}$=3,求下列各式的值.
(1)a+a-1
(2)a-2+a2
(3)$\frac{{a}^{\frac{1}{2}}{+a}^{-\frac{1}{2}}}{{a}^{\frac{1}{2}}{-a}^{-\frac{1}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=($\frac{1}{2}$)x,a>0,b>0,a≠b,A=f($\frac{a+b}{2}$),B=f($\sqrt{ab}$),c=f($\frac{2ab}{a+b}$),则A,B,C中最大的为C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合M={x|x2-7x+10≤0},N={x|x2-(2-m)x+5-m≤0},且N⊆M,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解不等式
(1)|x-1|+|x-3|>4;
(2)|x-3|-|x+1|<4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若正数3x+4y+5z=6,则$\frac{1}{2y+z}$+$\frac{4y+2z}{x+z}$的最小值$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对于函数f(x)=log${\;}_{\frac{1}{2}}$(x2-2ax+3),解答下述问题
(1)若函数的定义域为R,求实数a的取值范围
(2)若函数的值域为R,求实数a的取值范围
(3)若函数在[-1,+∞)内有意义,求实数a的取值范围
(4)若函数的定义域为(-∞,1)∪(3,+∞),求实数a的值
(5)若函数的值域为(-∞,-1],求实数a的值
(6)若函数(-∞,1]内为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(Ⅰ)若C={x|x∈A且x∈N},求集合C的真子集的个数;
(Ⅱ)若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.化简:(2${a^{\frac{2}{3}}}$${b^{\frac{1}{2}}}$)(-6${a^{\frac{1}{2}}}$${b^{\frac{1}{3}}}$)÷(-3${a^{\frac{1}{6}}}$${b^{\frac{5}{6}}}$)=4a.

查看答案和解析>>

同步练习册答案