精英家教网 > 高中数学 > 题目详情
20.若方程ax2+bx+c=0(a≠0)无实根,求证:a3+ab+c≠0.

分析 利用反证法进行证明即可.

解答 证明:反证法:若a3+ab+c≠0不成立,
则a3+ab+c=0,即c=-a3-ab,
则判别式△=b2-4ac=b2-4a(-a3-ab)=4a4+4a2b+b2=(2a2+b)2≥0,
则方程ax2+bx+c=0(a≠0)有实根,
与方程ax2+bx+c=0(a≠0)无实根,矛盾,
故假设不成立,
故结论a3+ab+c≠0成立.

点评 本题主要考查反证法的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.定义在区间(-1,1)上的函数f(x)满足:对任意x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+xy}$),且当x∈(-1,0)时,有f(x)>0.
(1)判定f(x)在区间(-1,1)上的奇偶性,并说明理由;
(2)判定f(x)在区间(-1,1)上的单调性,并给出证明;
(3)求证:f($\frac{1}{{n}^{2}+3n+1}$)=f($\frac{1}{n+1}$)-f($\frac{1}{n+2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过原点的直线与圆x2+y2-4x+3=0相切,若切点在第四象限,则该直线方程为(  )
A.y=$-\sqrt{3}$xB.y=$\frac{{\sqrt{3}}}{3}$xC.y=$-\frac{{\sqrt{3}}}{3}$xD.y=$\sqrt{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a,b是两条直线,α,β是两个平面,则下列推导正确的是(  )
A.a?α,α⊥β,b⊥β⇒a⊥bB.a⊥α,b⊥β,α∥β⇒a⊥bC.a⊥α,α∥β,b∥β⇒a⊥bD.a⊥α,α⊥β,b∥β⇒a⊥b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a、b、c是空间三条直线,下面给出四个命题:
①若a⊥b,b⊥c,则a∥c;
②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;
③若a和b相交,b和c相交,则a和c也相交;
④若a和b共面,b和c共面,则a和c也共面.
其中真命题的个数是(  )
A.4B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.关于x的不等式x2-ax-6a<0的解集为{x|x1<x<x2}(x1<x2),且|x1-x2|的值不超过5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求证:不论m取什么实数,方程x2-(m2+m)x+m-2=0必有两个不相等的实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.由y=cosx及x轴围成的介于0与2π之间的平面图形的面积,利用定积分应表达为S=4${∫}_{0}^{\frac{π}{2}}$cosxdx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列各组函数相等的是(  )
A.f(x)=x-2,g(x)=$\frac{{x}^{2}-4}{x+2}$B.f(x)=$\frac{|x|}{x}$,g(x)=1(x≠0)
C.f(x)=x2-2x-1,g(t)=t2-2t-1D.f(x)=$\frac{1}{2}$,g(x)=$\frac{(x-1)^{0}}{2}$

查看答案和解析>>

同步练习册答案