精英家教网 > 高中数学 > 题目详情
15.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,1),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°.

分析 利用cos<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$,能求出向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

解答 解:∵平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,1),
∴cos<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{3+2}{\sqrt{5}•\sqrt{10}}$=$\frac{\sqrt{2}}{2}$,
∴<$\overrightarrow{a},\overrightarrow{b}$>=45°.
∴向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角45°.
故答案为:45o

点评 本题考查两向量的夹角的求法,是基础题,解题时要认真审题,注意平面向量坐标运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若log${\;}_{\sqrt{3}}$x+log${\;}_{\sqrt{3}}$y=2,则3x+2y的最小值为6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设F为抛物线C:y2=3x的焦点,过F作直线交抛物线C于A、B两点,O为坐标原点,则△OAB面积的最小值为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知cos($\frac{π}{12}$-θ)=$\frac{1}{3}$,则sin(2θ+$\frac{π}{3}$)=$-\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$,满足$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0,已知$\overrightarrow{a}$、$\overrightarrow{b}$成60°角,且$\overrightarrow{a}$、$\overrightarrow{b}$的大小分别为2和4,则$\overrightarrow{c}$的大小为(  )
A.6B.2C.2$\sqrt{5}$D.2$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现,但生猪养殖成本逐月递增.下表是今年前四个月的统计情况:
月份1月份2月份3月份4月份
收购价格(元/斤)6765
养殖成本(元/斤)344.65
现打算从以下两个函数模型:
①y=Asin(ωx+φ)+B,(A>0,ω>0,-π<φ<π),
②y=log2(x+a)+b
中选择适当的函数模型,分别来拟合今年生猪收购价格(元/斤)与相应月份之间的函数关系、养殖成本(元/斤)与相应月份之间的函数关系.
(1)请你选择适当的函数模型,分别求出这两个函数解析式;
(2)按照你选定的函数模型,帮助该部门分析一下,今年该地区生猪养殖户在8月和9月有没有可能亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合M={1,2,3},N={z|z=x+y,x∈M,y∈M},则集合N中的元素个数为(  )
A.3B.5C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.抛物线x2=2py(p>0)的准线方程为y=-3,则p=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,侧面ACC1A1⊥侧面ABB1A1,∠B1A1A=∠C1A1A=60°,AA1=AC=4,AB=1.
(Ⅰ)求证:A1B1⊥B1C1
(Ⅱ)求三棱锥ABC-A1B1C1的侧面积.

查看答案和解析>>

同步练习册答案