精英家教网 > 高中数学 > 题目详情
17.化简:
(1)$\frac{cos(180°+α)sin(90°+α)tan(α+360°)}{sin(-α-180°)cos(-180°-α)cos(270°-α)}$.
(2)$\frac{1}{cosα\sqrt{1+ta{n}^{2}α}}$+$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$(其中α为第二象限角).

分析 (1)利用诱导公式及同角三角函数基本关系式即可化简得解;
(2)根据α的范围可求cosα<0,利用诱导公式及同角三角函数基本关系式即可化简得解;

解答 解:(1)原式=$\frac{{-cosα•cosα•\frac{sinα}{cosα}}}{{sinα•({-cosα})•({-sinα})}}=-\frac{1}{sinα}$.
(2)∵α为第二象限角,cosα<0,
∴原式=$\frac{1}{cosα×\sqrt{\frac{1}{co{s}^{2}α}}}$+$\sqrt{\frac{(1+sinα)^{2}}{co{s}^{2}α}}$-$\sqrt{\frac{(1-sinα)^{2}}{co{s}^{2}α}}$=$-1+\frac{1+sinα}{-cosα}+\frac{1-sinα}{cosα}=-1-2tanα$.

点评 本题主要考查了诱导公式及同角三角函数基本关系式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知当x=4时,函数y=x2+px+q有最小值-3.
(1)求p、q的值;
(2)写出函数y=-x2+(q-3)x+p的对称轴方程、顶点坐标及函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=2$\sqrt{3}$cos(2x+$\frac{π}{6}$)+3.
(1)求f(x)的最大值及单调递减区间;
(2)若锐角α满足f(α)=3-2$\sqrt{3}$,求tan$\frac{4}{5}$α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某工程由A、B、C、D四道工序组成,完成他们需用时间依次为2,5,x,4天,四道工序的先后顺序及相互关系是:A、B可以同时开工;A完成后,C可以开工;B、C完成后,D可以开工,根据题意画出工序图.若该工程总时数为9天,则完成工序C需要的天数x最大是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3-1的新驻点分别为α,β,γ,则α,β,γ的大小关系为γ>α>β.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{a}^{n-1}}{1{+a}^{n}}$(a>0)=$\left\{\begin{array}{l}{a-\frac{1}{a},a>1}\\{0,0<a≤1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.根据数列极限的定义证明:
(1)$\underset{lim}{n→∞}(-1)^{n}\frac{1}{{n}^{2}}$;   
(2)$\underset{lim}{n→∞}\frac{3n+1}{2n+1}$;
(3)$\underset{lim}{n→∞}$$\underset{\underbrace{0.999…9}}{n个}$=1;
(4)$\underset{lim}{n→∞}\frac{sinn}{n}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求极值$\underset{lim}{x→0}$$\frac{{e}^{x}-{e}^{-x}}{arcsin2x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某程序框图如图所示,该程序运行后输出的S的值是30

查看答案和解析>>

同步练习册答案